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Abstract

The present work tackles integration in mobile robotics. Integration is
often considered to be a mere technique, unworthy of scientific investiga-
tion. On the contrary, we show that integrating capabilities in a mobile
robot entails new questions that the parts alone do not feature. These ques-
tions reflect the structure of the application and the physics of the world.
We also show that a succesful integration process transforms the parts
themselves and allows to scale up mobile-robot intelligence in real-world
applications.

In Chapter 2 we present the hardware. In Chapter 3, we show that
building a low-level control architecture considering the mechanic and
electronic reality of the robot improves the performances and allows to
integrate a large number of sensors and actuators. In Chapter 4, we show
that globally optimising mechatronic parameters considering the robot as
a whole allows to implement slam using an inexpensive sensor with a low
processor load. In Chapter 5, we show that based on the output from the
slam algorithm, we can combine infrared proximity sensors and vision to
detect objects and to build a semantic map of the environment. We show
how to find free paths for the robot and how to create a dual geometric-
symbolic representation of the world. In Chapter 6, we show that the nature
of scenarios influences the implementation of a task-planning algorithm
and changes its execution properties. All these chapters contribute results
that together prove that integration is a science.

In Chapter 7, we show that combining these results improves the state
of the art in a difficult application : autonomous construction in unknown
environments with scarce resources. This application is interesting because
it is challenging at multiple levels : For low-level control, manipulating
objects in the real world to build structures is difficult. At the level of
perceptions, the fusion of multiple heterogeneous inexpensive sensors is
not trivial, because these sensors are noisy and the noise is non-Gaussian.
At the level of cognition, reasoning about elements from an unknown
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world in real time on a miniature robot is demanding. Building this
application upon our other results proves that integration allows to scale
up machine intelligence, because this application shows intelligence that
is beyond the state of the art, still only combining basic components that
are individually slightly behind the state of the art.

Keywords : miniature mobile robot, integration, machine intelligence,
scalability, event-based architecture, slam, symbol grounding, htn plan-
ning, autonomous construction, scarce resources, design methodology
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Résumé

Ce travail étudie la question de l’intégration de systèmes en robotique
mobile. L’intégration est souvent considérée comme purement technique,
sans intérêt scientifique intrinsèque. Au contraire, nous montrons qu’in-
tégrer des capacités dans un robot mobile suscite de nouvelles questions
que ne posent pas les différentes parties individuellement. Ces questions
reflètent la structure de l’application et la physique du monde. Nous
montrons qu’un processus d’intégration, s’il réussit, transforme les parties
elles-mêmes et permet d’étendre l’intelligence des robots mobiles dans
leurs applications au monde réel.

Dans le chapitre 2, nous présentons les robots utilisés comme cadre
expérimental. Dans le chapitre 3, nous montrons que la prise en compte
des réalités mécaniques et électroniques du robot lors de la construction
d’une architecture de contrôle bas niveau permet d’en améliorer les per-
formances et d’intégrer un grand nombre de capteurs et d’actuateurs.
Dans le chapitre 4, nous montrons qu’en considérant le robot comme
un tout pour optimiser globalement ses paramètres mécatroniques, il de-
vient possible d’implémenter du slam avec un capteur bon marché et une
puissance de calcul limitée. Dans le chapitre 5, nous montrons que nous
pouvons nous baser sur la sortie de l’algorithme de slam pour combiner
les capteurs infrarouges de proximité et la vision pour détecter des ob-
jets et pour construire une carte sémantique de l’environnement. Nous
montrons comment trouver des chemins libres pour le robot et comment
créer une représentation duale du monde, géométrique et symbolique.
Dans le chapitre 6, nous montrons que la nature des scénarios influence
l’implémentation d’un algorithme de planification de tâches et change ses
propriétés d’exécution.

Dans le chapitre 7, nous montrons qu’en combinant ces résultats, nous
pouvons améliorer l’état de l’art d’une application difficile : la construction
autonome dans un environnement inconnu avec des ressources rares. Cette
application est ambitieuse à plusieurs titres : pour le contrôle bas niveau,
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la manipulation d’objets pour construire des structures est difficile dans le
monde réel. Au niveau de la perception, la fusion des données de multiples
capteurs hétérogènes et bon marchés n’est pas triviale, car ces capteurs
sont bruités d’un bruit non gaussien. Au niveau de la cognition, raisonner
en temps réel sur un robot miniature à propos des éléments d’un monde
inconnu est ardu. Construire cette application sur nos résultats précédents
prouve que l’intégration permet d’étendre l’intelligence des machines. En
effet, cette application démontre une intelligence qui dépasse l’état de l’art,
en ne combinant que des composants de base en deçà de l’état de l’art.

Mots clés : robot mobile miniature, intégration, intelligence machine,
extensibilité, architecture basée sur des événements, slam, ancrage de
symboles, planification htn, construction autonome, ressources rares,
méthodologie de conception.
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Chapter 1

Introduction

Mobile robotics has made indisputable progresses in the last decades.
The improvements in energy storage now allow a simple and light Lithium
battery to power demanding sensors and actuators for hours. The availabil-
ity of inexpensive and highly integrated embedded application processors,
a consequence of the massive market of mobile phones, has brought
advanced capabilities to small mobile robots, such as high-resolution vis-
ion. Moreover, the improvements in electronics and material science have
lowered the cost of sensors and actuators, and have improved their quality.
The combination of all these advances has thus led to affordable robot
hardware and allowed sophisticated control software.

Today—in research—autonomous mobile robots map unknown en-
vironments, detect objects and people, and run for hours. Yet there are
few end-user applications of mobile robotics using such capabilities. In
commercial applications, most mobile robots are either remotely steered or
perform tasks requiring trivial reactive control. Commercial applications
of mobile robotics only show a weak level of intelligence 1 because they
fail to combine the advanced capabilities found in research.

Combining several capabilities is an integration problem; and follow-
ing Occam’s razor principle 2, researchers of a particular field usually
simplify aspects related to other fields to the maximum. For instance, to
study mapping one can combine a commercial mobile base, a standard
laser scanner and a laptop computer. As a result, integration 3 is often
considered to be a mere technique and thus unworthy of scientific invest-
igation. Yet this is true only as long as methods and results of different

1. We define what we mean by intelligence in Section 1.1.3
2. “Plurality ought never be posed without necessity” [107]
3. We define what we mean by integration in Section 1.1.1
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fields are compositional, that is, when the combination of the methods
does not change the results. Most researchers quietly assume this as a
premise.

On the contrary, our first hypothesis is that the different aspects of a
mobile robot, such as its mechatronic structure, its sensors and actuators,
its communication capabilities, its envisaged application, etc. all influence
each other. For instance, the way sensors and actuators are distributed
inside the robot influences the control architecture, or, in a multi-robot
scenario, the number of robots influences the reasoning algorithms. There-
fore, as the integration choices reflect the inner structure of the application
and the physics of the world, and because the integration process modifies
what is being integrated, integration is a science 4 of its own, and not a
mere technique of assembly.

Hypothesis 1.1. Integration is a science. Indeed, integrating capabilities in a
mobile robot entails new questions that the parts alone do not feature. These
questions reflect the structure of the application and the physics of the world.
Moreover the integration process modifies the parts themselves.

Let us now admit that integration is a science, that there are generic
principles that govern how to combine things together to achieve a given
result. In particular, we suppose that we understand and have models of
how the different elements of a robot influence each other, and that we
can put a figure on these influences. Thus we can alleviate the adverse
effects of these influences and use them to create synergies instead. At
the level of perception, we can take advantage of the complementarity
between the different sensors to scale up the richness and the diversity of
the world representation. At the level of action, we can work around the
weaknesses of a particular platform and devise robust plans that allow an
imperfect robot to achieve complex goals. Because of these improvements,
the robot has a better picture of the world and a clearer understanding of
its capabilities. Therefore, it can perform more sophisticated reasoning
and thus displays a more intelligent behaviour. This leads us to our second
hypothesis.

Hypothesis 1.2. The science of integration allows to scale up mobile-robot
intelligence in real-world applications.

In this work, we test these hypotheses by identifying influences between
the experimental scenarios, the mechanic and the electronic structure of

4. We define what we mean by science in Section 1.1.2
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the robots, and the algorithms. We show that taking the mechatronics and
the application scenario into account while implementing the algorithms
improves the efficiency of the robots and unlocks new capabilities. We
also show that combining these capabilities allows to create applications
where the robot shows a high level of intelligence.

1.1 Definitions

Our hypotheses call for the clarification of the meaning of the terms
integration, science and intelligence in the context of this work.

1.1.1 Integration

By integration, we mean the process of combining together different
elements or components into a global system, typically a robot. Works in
the middleware field have already extensively studied the software aspect,
see for instance [14,19]. However, in our case we wish to extend the process
of integration to the consideration of how mechanical and electronic
specificities affect the software. So while we do not aim at a complete
co-design methodology, we are interested in the influences of hardware
on software. As we will see for instance in Chapter 3, these influences can
be as deep as to force a re-definition of the control architecture.

1.1.2 Science

By science, we mean a process of gathering and streamlining knowledge
into testable theories. In the context of robotic integration, this means
looking for patterns that recurrently appear independently of the parts
being integrated. The Popperian school considers that scientific theories
must be falsifiable [87]. However, in this work we do not aim at theories
that are directly falsifiable, but rather at finding recurrent patterns out of
which we can make educated guesses for future designs of robotic control
software. This corresponds to a Bayesian rather than to a Popperian view
of science [16].

1.1.3 Intelligence

Intelligence does not admit a single authoritative definition. Therefore
we fall back on a functional one. We propose to employ [43, p. 13]:
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A very general mental capability that, among other things,
involves the ability to reason, plan, solve problems, think ab-
stractly, comprehend complex ideas, learn quickly and learn
from experience. It is not merely book learning, a narrow
academic skill, or test-taking smarts. Rather, it reflects a
broader and deeper capability for comprehending our sur-
roundings—“catching on”, “making sense” of things, or “fig-
uring out” what to do.

This definition encompasses what is generally accepted in robotics as
elements critical to intelligence. These include both classical artificial
intelligence (sense/plan/act paradigm) and more adaptive approaches
(through the learning aspect).

1.2 Approaches to robotic integration

Albeit most roboticists consider integration to be a mere technical prob-
lem, several specific research fields have addressed questions related to
integration. In these works, integration is sometimes considered explicitly,
but often implicitly. Moreover, each of these communities has concentrated
on a particular aspect of integration, and neglected the others. No current
work in mobile robotics has addressed it as a whole, as a scientific question
in itself. In this section we briefly survey the main existing approaches, to
introduce enough background knowledge for the main discussion on our
work.

1.2.1 Software middleware

Section 3.1 (p. 24) provides a survey of the literature on robotic software
middlewares, in this section we discuss their properties. The middleware
approach conceives the question of integration as a software engineering
problem. It proposes to decompose robot control algorithms into self-
contained modules with well-defined interfaces, called components. Proxy
components endow sensors and actuators with compatible interfaces, such
that application developers can connect them into control components.
While we agree that components do ease the integration of complex
controllers and promote reuse of code across applications, they only solve
part of the problem. Indeed, first they ignore the mechatronic aspect of
the integration problem. Building an effective robot controller demands
more than programming algorithms: It depends on the correct spatial and
temporal synchronisation between mechanical elements, and is tightly
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linked with the capabilities of the robot’s sensors, actuators and computer,
and with the limitations of the buses connecting these together. These
require testing and experimentation—or a complete modelling—and are
not easily abstracted away by software interfaces. Second, components
are fixed black boxes that we can only connect together. As we shall
see later in this report, integrating algorithms together demands that we
adapt these algorithms, and thus that we modify the internals of the
components. Albeit components might provide parameters to control
their internal processes, adjusting these parameters cannot address all
possible situations. Finally, while components’ implementations can often
run distributed on a network, they typically require a fixed topology with
reliable connections. They do not provide mechanisms to cope gracefully
with abrupt disconnections. This currently does not make them suitable
as the backbone software infrastructure for realistic collective-robotic
applications. And yet most robotic applications would require several
robots, or at least robots in communication with surrounding equipments.

1.2.2 Cognitive and control architectures

Cognitive and control architectures, if understood in the broad sense,
are also attempts to address the problem of integrating intelligent beha-
viours. Contrary to middlewares, cognitive architectures do not explore
how to connect components together, but rather what elements are needed
to obtain intelligent behaviours. Early cognitive architectures, such as
ACT-R [3] and Soar [60], stem from psychology and aim at modeling
the human cognition. They consider that noiseless symbolic inputs are
available and ignore the problems of perception and action. Some more
recent works, such as [99], are closer to the robotic reality and have led to
functional implementations in robots, for example [50]. However, even in
these works, the cognitive architecture only solves the high-level problems,
and there is a huge amount of ad hoc code and infrastructure to allow the
robot to peform the task. Moreover, at the level of cognition the task is
simple and thus current results do not provide a strong evidence of the
integration capability of the architecture.

In total opposition to the abstract and symbolic approach of early
cognitive architectures, the field of control architectures consider the
problem from the perspective of the robot. Albeit cognitive architectures
can control the robot as well, when we speak about control architectures,
we restrictively mean the field that focuses on how to enable the robot to
perform tasks, rather than to model what the robot should think. In this
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field, some works such as the subsumption architecture [12] propose a
parallel processing of the information flow with no explicit representation
at the level of the architecture. Other works, such as HCS [2], propose
a hierarchical decomposition with intermediate representations. These
architectures are very generic and in this sense could be interpreted as
models of middlewares. The subset of the multisensor data fusion research
field that deals with robotics could also be considered as studying control
architectures [94, ch. 25]. Works from this field carefully consider the
technical characteristics of the sensors, but generally they do not address
the methodology of the choice of the sensors.

Some works, such as the 3T architecture [9], have proposed to integ-
rate both control and cognition into a unified layered architecture, with
bi-directional connections between the layers. As with all existing ar-
chitectures, 3T is a very general framework that does not approach the
question of the integration of the mechatronic aspects. Yet we think that
this direction is the most realistic for implementing robotic control between
microcontrollers and a main computer (see Chapter 2), and we can inter-
pret our application in the light of this architecture. In this case, aseba

(see Chapter 3) implements the low-level layer while the main computer
runs the other layers.

1.2.3 Embodiment and the exploitation of morphology

In opposition to the proponents of cognitive architectures, the advoc-
ates of embodiment claim that the cognitive capabilities depend deeply
on the hardware of the robot. While this argument was originally used in
favour of control architectures versus cognitive architectures, recently its
proponents argued in favour of a more extreme exploitation of the physical
body of the robot. Indeed, recent studies [113] show that the morphology
and the material properties can deeply affect the efficiency of a system
design. Based on this idea, researchers have exploited the morphology of
the robot to perform tasks such as passive walking [18], fast running [57]
and climbing almost vertical surfaces [111]. These results are interesting
and show the importance of considering the mechanic of the robot while
doing system design, however they do not approach cognitive tasks nor
do they propose solutions to build versatile robots. We thus think that
exploiting the morphology is a useful idea as part of a larger methodology,
but that alone it is limited to trivial scenarios.
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Figure 1.1 The bloc scheme of the autonomous construction application.

1.3 Outline

We begin this report by presenting the hardware in Chapter 2. In
Chapter 3, we show that building a low-level control architecture consider-
ing the mechanic and electronic reality of the robot improves the perform-
ances and allows to integrate a large number of sensors and actuators. In
Chapter 4, we show that globally optimising mechatronic parameters, for
instance the error on the odometry, considering the robot as a whole allows
to implement simultaneous localisation and mapping (slam) using an
inexpensive sensor with a low processor load. In Chapter 5, we show that
based on the output from the slam algorithm, we can combine infrared
proximity sensors and vision to detect objects and to build semantic maps
of the environment. We show how to find free paths for the robot and
how to create a dual geometric-symbolic representation of the world. In
Chapter 6, we show that the nature of collective-robotic scenarios influ-
ences the implementation of a task-planning algorithm and thus changes
its execution properties. All these chapters contribute results that together
prove Hypothesis 1.1.

In Chapter 7, we show that combining these results improves the state
of the art in a difficult application: autonomous construction in unknown
environments with scarce resources. In this application, a robot explores
its environment and builds structures in it, following orders from a human.
At the beginning, the robot does not know the geometry and the topology
of the environment; and as the resources are scarce, it must use them
parsimoniously. Figure 1.1 shows the system-level bloc scheme of this
application; we will refer to this global picture throughout this report.
This application is interesting because it is challenging at multiple levels:
For low-level control, manipulating objects in the real world to build
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structures is difficult. At the level of perceptions, the fusion of multiple
heterogeneous inexpensive sensors is not trivial, because these sensors are
noisy and the noise is non-Gaussian. At the level of cognition, reasoning
about elements from an unknown world in real time on a miniature real
robot is demanding. Building this autonomous construction application
upon our other results proves Hypothesis 1.2, because we demonstrate an
application showing machine intelligence that is beyond the state of the
art, still only combining basic components that are individually slightly
behind the state of the art.

In Chapter 8, we discuss the lessons learnt by doing this work. Finally,
in Chapter 9, we summarise our contributions and provide outlooks.
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Chapter 2

Hardware

As material to explore the question of integration, we use two robots
that our laboratory, epfl-lsro-Mobots, has developed. The first robot is
the marXbot, a modular ground robot. We have extended the marXbot
with a magnetic manipulator, which allows the robot to displace objects
and to act on its environment. The marXbot is our main experimental
platform; Figure 2.1 shows the hardware part within the bloc scheme of
the autonomous construction application. The second robot is the handbot,
a climbing robot.

2.1 Common architecture

Our two robots share a common system architecture (Figure 2.2):
microcontrollers manage sensors and actuators (Section 2.1.1) while a
central embedded computer runs Linux and takes care of high-level tasks

HTN planning

order from human

execution

low-level control

perception

actuatorssensors

Figure 2.1 The hardware part within the bloc scheme of the autonomous con-
struction application.
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Figure 2.2 Overview of the architecture of our robots

such as vision (Section 2.1.2).

2.1.1 Microcontrollers

At the electronic level, most hardware peripherals—sensors and actuators—
require sequences of input signals to control their functioning. For instance,
a motor requires a pulse-width modulation and an infrared proximity
sensor demands two subsequent acquisitions, one for the ambient intensity
and one for the reflected intensity. The timings of these signals must be
precisely set for the peripherals to work correctly. Moreover, as output
the hardware peripherals produce streams or sequences of data, analog
or digital. For instance, the output of an infrared sensor is an analog
voltage, which must be converted into a digital value for use by the control
algorithms.

To control hardware devices with precision and in real time, the best
solution is to reduce wiring and thus to place microcontrollers physically
close to the devices. A single powerful central embedded computer is
not sufficient, because it does not provide enough interfaces such as
timers, analog-to-digital converters or general-purpose input/output pins.
Moreover, even if it did, the large number of wires required to connect
the different locations of the peripherals to the central computer would
prohibit this solution.

Thus, at the electronic level, our robots embed a multitude of micro-
controllers distributed wherever they are needed. These microcontrollers
are connected together through a shared communication bus. We decided
to use the controller-area network (can) bus [102], because it is readily
available in common microcontrollers and is capable of multi-master op-
erations. We employ 16-bit microcontrollers from the Microchip dsPIC33
family, because they provide a rich variety of interfaces and incorporate in-
structions optimised for digital signal processing. To programme and take
advantage of this network of distributed processors, we have developed a
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Figure 2.3 Schematic of the central computer of our robots

low-level event-based control architecture, detailed in Chapter 3.

2.1.2 Central computer

Microcontrollers are well-suited for managing peripherals with an
output bandwidth in the order of some kB/s. However, some sensors such
as cameras have a much higher bandwidth and produce data that require
heavy processing. In addition, high-level tasks such as probabilistic map
building or symbolic reasoning also require a large computational power.
To address these needs, our robots embed a central computer. This com-
puter is based on a 533 MHz Freescale i.MX31 application processor and
128 MB of ram (Figure 2.3). The i.MX31 embeds an arm 11 core, memory
controllers, a camera interface and several serial ports. This computer
runs Linux 2.6.33 and the OpenEmbedded development environment. The
computer communicate with the microcontrollers through a translator
that links the can network with a serial port. To provide high-quality
vision to the robots, we have connected a three-megapixel camera to the
i.MX31. The i.MX31 acquires the camera data in hardware using a direct
memory access (dma) controller, and thus the image is available in the
main memory without any software processing.

2.2 MarXbot

In this section, we present the marXbot miniature mobile robot in the
configuration that we use for our experiments (Figure 2.4). The marXbot
is a modular robot; for our experiments we use a configuration with 4
modules. A base module provides energy, mobility, inertial measurement
and short-range sensing (Section 2.2.1). Situated on top of the base, a
magnetic manipulator module (Section 2.2.2) allows the marXbot to grasp,
position and drop any light object whose side is ferromagnetic. Above the
manipulator, a distance scanner module (Section 2.2.3) allows the robot to
build a two-dimensional map of its environment. Finally, at the top of the
robot, the main computer board runs Linux, manages vision and provides
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Figure 2.4 The marXbot (top) and an overview of its electronic schematic (bot-
tom), both showing the configuration that we use for our experiments. All motors
have position, speed and current sensors.
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high-level cognitive capabilities. There exist other modules, for example
for inter-robot assembling or localisation. We do not use these modules in
this work and thus we do not describe them.

2.2.1 Base module

The marXbot is built upon a base module that provides rough-terrain
mobility thanks to treels, a combination of tracks and wheels [72]. The
treels provide good mobility in rough terrain at the expense of the preci-
sion of the odometry. In particular, the track part of the treel slips on the
ground when the robot turns, which results in wrong odometry readings
during rotations. To compensate, the base module embeds a gyroscope
that can precisely measure the rotation of the robot for short durations.
The base module embeds a ring of 24 short range infrared proximity
sensors that allow the robot to perceive and to avoid obstacles. The base
module also contains 8 infrared ground sensors that allow the robot to
measure the distance to the ground and thus to avoid holes. For energy,
the base module contains a slot for a swappable battery that powers the
robot. This 38 Wh lithium polymer battery provides up to 7 hours of
continuous operation when moving around and using the scanner. If the
robot uses its manipulator a lot, the autonomy drops slightly but is still
over 4 hours.

2.2.2 Magnetic manipulator

We designed the magnetic manipulator to endow the marXbot with
the ability to grasp, displace and position small objects. This allows the
marXbot to build structures and to manipulate its environment (Chapter 7).
The magnetic manipulator features 6 infrared proximity sensors, which
allows the marXbot to precisely align itself with the objects to grasp
(Figure 2.5, top) As the marXbot can rotate on the spot and move freely
on the ground plane, the manipulator has only three degrees of freedom.
The robot can elevate and rotate its manipulator to position an object
at a given altitude and pitch angle. The manipulator uses a magnetic
switchable device [90] to implement the prehension. This device consists
of a permanent magnet that rotates inside two pieces of metal (Figure 2.5,
bottom). Depending on the orientation of the magnet with respect to the
pieces of metal, the magnetic flux is either open or closed. When the
flux is open, the device grasps external ferromagnetic objects; when the
flux is closed, the device does not attract external objects. This device is
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Figure 2.5 The magnetic manipulator module

bi-stable, and thus does not consume energy excepted when changing
states (opening or closing). This operation lasts about 1 second.

2.2.3 Rotating distance scanner

The rotating distance scanner of the marXbot aims at being compact,
inexpensive and energy efficient. The design is based on 4 infrared sharp
distance sensors mounted on a rotating platform (Figure 2.6). These
sensors have a limited range, a dead zone close to the device and a non-
monotonic response function (Figure 2.6, centre). To disambiguate the
readings, the scanner couples two sensors of different ranges (40–300 mm
and 200–1500 mm). A probabilistic processing of the raw values will allow
to retrieve the real distances (Chapter 4). The platform rotates continuously
to make 360° scans; as it embeds two sensors of each type, the robot gets a
full scan every 180°. A motor with a worm gear drives the rotation while
two plastic ball bearings ensure the guidance. The motor is located in
the rotor, to ease the synchronisation between the platform’s position and
the scanner’s values. This location also fits well within the geometrical
constraints of the robot and allows for a slim design. To minimise the wear
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Figure 2.6 The rotating distance scanner module. A cad view (top), the response
functions of the infrared distance sensors (centre) and the technical characteristics
(bottom).
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and maximise the life time of the scanner, the stator transfers energy to the
rotor by induction; and the two parts exchange data using infrared light.
This solution, albeit more difficult to implement than sliding contacts, is
much more reliable and lasting. Induction is implemented directly on two
printed circuit boards (pcbs) spaced by a gap of 0.8 mm.

The electronics of the scanner is distributed between the two pcb. The
fixed pcb is connected to the rest of the robot and manages the energy
transmission, while the rotating pcb acquires the sensors data and sends
them back to the fixed pcb using infrared communication. For more details
about the electronics of the scanner module, see [65].

2.3 Handbot

The handbot (Figure 2.7) is a climbing robot able to manipulate objects,
aiming at service in indoor environments. The handbot takes advantage
of synergies between climbing and object manipulation. This translates
as the ability to climb common vertical office structures such as shelves.
Within these structures, the robot gets small objects such as lightweight
books or compact discs. The handbot is not mobile on the ground, and
relies on other robots for transport, such as a modified version of the
marXbot. In this thesis, we use the handbot as a testbed for implementing
a complex behaviour with aseba: climbing a shelf to retrieve a book
(Section 3.3.2, p. 36). Because the handbot operates in three-dimensional
space and because we implement the climbing behaviour solely using
aseba, we consider worth to describe the handbot and to present this
experiment. In the rest of this section, we will present and explain the
mechatronics of the handbot robot.

2.3.1 Design choices

The biggest constraint for climbing under gravity is to provide the
vertical lift force; thus the handbot implements climbing by combining
two techniques. Rolling a rope provides the vertical lift force while ma-
nipulators provide horizontal operations. The handbot fixes the rope to a
ceiling and coils it around a reel. This mechanism is simple and can lift
a large mass by using a strong motor, as shown by previous work [58].
To be autonomous, the robot must be able to attach its rope to a specific
location, use it to climb and retrieve it afterwards. The handbot’s launch-
ing mechanism is based on a strong spring (Figure 2.8) that projects a
magnet to the ceiling. Though this approach works only in environments
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Figure 2.7 The handbot (top) and its electronic schematic (bottom). All motors
have position, speed and current sensors.
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Figure 2.8 Left: mechanism of the rope launcher. Right: schematics of the
launching sequence; the filled rectangles show the active motor: a, a motor
compresses the spring, b, a fast motor maintains the tension in the rope while
the spring launches the magnet, c, a clutch is engaged to let a strong motor lift
the robot.

with a ferromagnetic ceiling, it is well understood and reliable. Moreover,
depending on the type of ceiling, other attachment mechanisms such as
plungers may be applicable. To detach from the ceiling, the attachment
must be switchable. The handbot implements this feature using a magnetic
switch that the robot can trigger by sending a predefined code through
infrared.

When attached to the ceiling using the rope, the handbot has vertical
mobility but is horizontally unstable. To stabilise and position itself on the
horizontal plane, it needs manipulators to grasp the structure around it.
The handbot has two arms, each with a gripper as manipulator (Figure 2.7).
When using the two arms to climb, the robot maintains its stability all the
time. It can also manipulate an object with one gripper while keeping the
other one attached to the structure. That way, the handbot can manipulate
objects precisely. Once on the ground, special versions of the marXbot
robot can assemble with the handbot and displace it and the object it
carries to a specific location. The marXbots attach to the handbot by
grasping its translucent ring, which also contains 12 rgb leds.

2.3.2 Rope launcher

As we explained in the previous sections, the rope provides the main
lifting force of the handbot. Figure 2.8 (left) shows a photo of the mech-
anism of the rope launcher and Figure 2.8 (right) shows the schematics
of the launching sequence. To launch the rope, a motor compresses a
spring using a small wagon. This wagon moves inside the launch tube
and is driven by a worm gear. When the spring is fully compressed (at
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Figure 2.9 The degrees of freedom of the handbot

that point, it applies a force of 110 N), the wagon hits the bottom of the
tube and liberates the spring, which launches the rope, the magnet, and
the detachment mechanism up to an altitude of 270 centimetres. Two
different motors drive the rope: a strong one provides the main lifting
force and a fast one controls the tension of the rope, during launch and
retrieval. To switch between these two motors, a servomotor activates a
clutch. During launch, the fast motor brakes the reel: this is necessary
to prevent the formation of knots in the rope. The launching control
programme monitors the length of the uncoiled rope in real time. As soon
as the magnet reaches the target altitude, the fast motor firmly coils back,
which ensures the tension in the rope. If the magnet fails to attach, this
action will coil back most of the rope and the handbot will know that
the launch has failed. If the launch succeeds, the servomotor engages the
clutch so that the strong motor drives the rope, and provides the main
lifting force for the handbot. This force is strong enough to lift the robot
by itself.

If the handbot hangs freely at the rope, because it holds an object or has
failed to grasp an element of a structure, it can stabilise and orientate itself
using an inertial measurement unit and two fans. The fans are located at
the top of the body on both sides of the rope launcher tube.

2.3.3 Manipulators

The handbot has two arms on its front side. They can bend/extend
forward—independently—and rotate with respect to the robot body (Fig-
ure 2.9). At the end of each arm, the handbot has a gripper (Figure 2.10a).
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(a) passive compliance when grasping (b) locations of the infrared sensors

Figure 2.10 The handbot’s gripper can open at 90° and close completely. When
closing, its parallel compliance mechanism allows it to grasp objects of different
thicknesses. The claws can apply a force up to 4 kg thanks to the high reduction
of their worm drive.

Each gripper can rotate with respect to its arm and can open and close
its claws. To grasp objects and structures of different thicknesses, the
grippers’ claws have a parallel compliance mechanism. When no objects
are present, a spring maintains a large opening angle between the claws.
Once the claws squeeze an object, the points of contact are different than
the points of rotation which generates a moment that aligns the claws in
parallel with the object. This provides a strong force over a large range of
thicknesses. To control grasping, each gripper can detect structures and
objects at close range using 12 infrared proximity sensors on its perimeter
(Figure 2.10b). These sensors have a range of 12 centimetres. In addition,
the gripper has a vga camera in its centre. This camera is capable of
applying in hardware a Sobel filter [101] to the image, which eases line
and object detection.
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Chapter 3

ASEBA, a low level
architecture for event-based
control of complex robots

As we have described in the previous chapter, a modern miniature
mobile robot is all but a monolithic piece of engineering. Such a robot
embeds a large quantity of sensors and actuators. These require far more
input/output interfaces than what a typical embedded computer offers,
and thus one must delegate the management of these peripherals to other
processors (Section 2.1.1, p. 10). In most mobile robots that aim at complex
tasks [73, 110], microcontrollers manage sensors and actuators while a
central computer manages processing-intensive tasks such as vision and
reasoning. A shared communication bus connects all these processing
nodes together (Figure 3.1b). This architecture solves the connectivity
problem at the electronic level; however, it opens new control challenges.
Indeed, traditionally the control of miniature mobile robots was built
around a simple see/process/act loop (Figure 3.2, polling part). But when
peripherals are physically distributed, this control strategy does not scale
up with the number and bandwidth of sensors. As the central computer
manages all read and write operations, and these transit through the
communication bus, the robot suffers from bus overloading and excessive
latency to external stimuli. This limits the robot’s speed of operation and
the number of sensors and actuators the robot can embed.

To solve these problems, we must distribute the controller as well, at
least partially. In particular, we must filter information in the sensors
themselves, and dispatch it to the rest of the robot only if and when the
information is relevant to the application. This requires a shift in the



22 h Aseba

single

processor

sensors/

actuators

(a) centralised mechatronics, centralised control

sensors/

actuators

sensors/

actuators

sensors/

actuators

central

embedded

computer

microcontroller

microcontroller

microcontroller

(b) distributed mechatronics, centralised control

sensors/

actuators

sensors/

actuators

sensors/

actuators

central

embedded

computer

microcontroller

microcontroller

microcontrolleroptional

(c) distributed mechatronics, distributed control

Figure 3.1 Different hardware and control architecture paradigms. Aseba falls
in category c.

polling

event

2 3

cycle cycle

event

polling

1

sensors data transmission

reaction time

new situation

processingx

actuators data transmission

events transmission1

Figure 3.2 A time-oriented comparison of polling versus events-based systems.
(1) a central computer processing all sensors, (2) a microcontroller processing
its local sensors, (3) a microcontroller processing the incoming event and setting
actuators. Because processing is done locally in the microcontrollers, only useful
data are transmitted, and the transfer occurs asynchronously. Thus bus load and
reaction time are both reduced when using events.
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behaviour control paradigm: we must do event-based communication at
the microcontroller level instead of polling hardware devices from the
central computer. Yet this opens new challenges, as a microcontroller is
far less convenient to programme than an embedded computer. Program-
ming needs lengthy re-flashing, debugging requires special wiring, and
inspecting the behaviour of the programme in real time often perturbs
the operation, as code might run inside interrupts. Moreover, when one
wants to debug a distributed system of such microcontrollers, and the
synchronisation between them, one is often left with hacking one’s own
monitor and debug facilities. This is clearly not a satisfactory solution for
programming robots.

To overcome these challenges, we have developed an actuator and
sensor event-based architecture (aseba). Aseba provides a clean and unified
interface to the robot hardware by running user code inside a virtual
machine (vm) on the microcontrollers and allowing the microcontrollers
to communicate through events. To programme a network of microcon-
trollers from a unified place, aseba proposes an integrated development
environment (ide) which features instant code compilation, syntax high-
lighting, distributed debugging and monitoring. Aseba improves the state
of the art of robot low-level control architectures, and allows us to test the
following hypotheses:

Hypothesis 3.1. A vm is fast enough to run in a contemporary microcontroller,
and with proper integration with programming languages, can provide better
performances than code written by the robot application developer (Section 3.3.1).

Hypothesis 3.2. The use of a vm and user-friendly ide allows rapid prototyping
of complex distributed behaviours (Section 3.3.2).

Hypothesis 3.3. A low-level control architecture that takes mechatronic con-
straints into account should be event-based. This allows bandwidth saves (Sec-
tion 3.3.3) and lower latencies (Section 3.3.4) compared to a polling-based ap-
proach.

Hypothesis 3.4. Let a robot with a main computer for high-level tasks and a
low-level control architecture for managing its sensors and actuators; Integrating
the low-level architecture with an existing middleware on the main computer
allows to implement high-level tasks using a variety of programming languages
(Section 3.3.5).

This chapter presents aseba and gives experimental results that valid-
ate these hypotheses. It also discusses the lessons learnt, the future works
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Figure 3.3 The aseba part within the bloc scheme of the autonomous construc-
tion application.

and situates aseba in the broader context of this thesis. As Figure 3.3
shows, in the context of the autonomous construction application, aseba

allows to implement the low-level control in close interaction with the
hardware.

3.1 Related work

The idea of distributing data processing to the sensors themselves
was first explored by [28] almost twenty years ago. However, this early
work approached the question from a theoretical perspective and did
not propose any concrete implementation. To do so, one must consider
a complete hardware architecture, including a specific communication
bus. In mobile robots, a good candidate is the can bus, as shown by
several works that take advantage of its multi-master capabilities to let
the sensors send data at some pre-defined [42] or adaptive [44] rate.
Aseba improves on these by providing an event-based architecture where
the event emission policy is controlled by a vm inside microcontrollers.
Previous work has shown that a vm can be lightweight enough to run
even on tiny robots [106].

The event-based approach to multi-process communication has been
extensively studied in general-purpose middleware literature [66]. Early
theoretical works have shown the importance of strongly typing events [64].
More recent work has focused on using this type information to route
events efficiently [85]. In the context of robotic applications, researchers
have developed many middlewares, and a fair number are capable of
event-based communication. They all exhibit the same basic structure:
a software architecture where distributed components interact through
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a communication layer. One of the main differences lies at the level of
the communication layer: Orin [70] uses http; Miro [112] and RtMiddle-
ware [4] use corba; Orca uses Ice [52] while Orocos [14], Carmen [74],
DCA [83], Player [17] and ROS [88] provide their own layers. Some mid-
dlewares provide additional features, such as Orocos, which provides a
library to do Bayesian filtering, kinematics and dynamics computation; or
Carmen, which provides localisation and mapping. ROS is also more than
a middleware, as it is a robot software distribution. YARP [33] is a middle-
ware that proposes several connection types, such as tcp, udp, http, etc.
Orccad [97] is a noteworthy approach that provides an integrated tool to
build a behaviour and prove its real-time constraints. Finally, GenoM [34]
proposes an architecture close to aseba, with a low-level layer consisting
of distributed modules, and a centralised decisional layer on top of it.
Despite the diversity, these middlewares are all component-based architec-
tures that run on one or more central computers, not on microcontrollers.
In the context of miniature robots, these architectures thus suffer from the
same bandwidth and latency problems as any polling-based system.

The need for a deeply embedded behaviour control architecture has
been recognised by researchers working on complex robots, such as robots
with many degrees of freedom like modular self-reconfigurable robots [93].
In particular, researchers acknowledge the interest in defining an emission
policy per microcontroller but stress its difficulty: “On the other hand,
we could have all modules acting both as masters and slaves, letting the
roles be determined at run time. Such a design would be very robust
and flexible, if it works. However, our experience shows that the code
would be very complex and difficult to debug” [120, Sec. 4]. We think
that the cause of these problems is the lack of proper integration of the
development and debugging process in the architecture itself. Indeed, to
develop a complex behaviour easily, one must be able to quickly perform
trial-and-error experiments and to inspect what is happening inside the
different elements of the system. Most architectures neglect this aspect and
require a recompilation and re-flashing of all the microcontrollers for any
change in the controller code. On the contrary, aseba emphases efficient
development tools and provides an ide that allows instant changes in the
behaviour of the microcontrollers by loading new code to the vm. This flex-
ibility allows us to delegate higher-level functions to the microcontrollers,
not only low-level hardware management. For instance, we can implement
subsumption architectures [12] directly inside the microcontrollers. In
the more demanding context of three-layer architectures [39], we can run
the controller layer on the microcontrollers. This distribution of work
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Figure 3.4 Aseba in miniature mobile robots.

unloads the central computer and allows it to focus on the sequencer and
the deliberative layers.

3.2 Concept and implementation

3.2.1 Architecture

Aseba is an event-based architecture consisting of a network of pro-
cessing units which communicate using asynchronous events. An event is
a message with an identifier and payload data. All nodes send events and
react to incoming events. In a small mobile robot, most of the nodes are
microcontrollers and the communication layer can be any bus that is multi-
master–capable. In our robots, we use the can bus [102] that provides
this feature. Asynchronous events allow any microcontroller to transmit
data when it wishes to. A basic behaviour thus does not require a central
computer. If one is present, it can delegate the management of reflexes
to the microcontrollers and concentrate on high-level processing tasks,
such as vision or cognition. A sensor would typically emit an event only
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when some relevant elements of information are available. For instance, a
distance sensor could emit an event when an obstacle becomes closer than
a certain threshold, and only when this transition occurs. The distribution
of processing tasks to the microcontrollers thus reduces the load on the
communication bus with respect to a polling-based architecture (Figure 3.2,
Section 3.3.3). Moreover, when compared to polling with a fixed frequency,
asynchronous events also decrease the latency, which improves the robot
reaction time (Section 3.3.4).

In addition to the microcontrollers, the robot optionally embeds a
central computer running Linux. The Linux runs a piece of software,
Medulla, which extends the network through D-Bus to local programmes
and through tcp/ip to any remote host, typically for the aseba ide, as
seen in Figure 3.4a. D-Bus is a middleware present by default under
Linux [15]. It provides object-oriented inter-process communication and
remote method invocation, using either synchronous or asynchronous
calls. Moreover, D-Bus is language-independant and integrates with most
programming languages such as C, C++, Java but also with scripting
languages such as Shell, Perl and Python. On these last two, D-Bus takes
profit of their dynamism to automatically create proxy objects correspond-
ing to remote interfaces. This eases the communication with aseba from
these languages, as shown in Listings 3.3 and 3.4. Medulla, by providing
both a standard interface to Linux programmes and a generic aseba in-
terface using tcp/ip, allows to run high-level controller software on the
Linux and scripts on the microcontrollers concurrently.

3.2.2 Events and control

The choice of which event to send depends on the robot behaviour: A
robot engaged in obstacle avoidance would not need the same events as a
robot following walls. Therefore, the behaviour developer must be able to
change the event control code easily; it must not be frozen in the firmware.
In aseba, this flexibility is implemented by splitting the microcontroller
code into two parts (Figure 3.4b).

First, sensor readings (for example, generating the timings for an
infrared sensor), actuator low-level control (for example the pid controller
of a motor), and the communication layer are implemented in native code
on the microcontrollers. This allows real-time, interrupt-driven handling
of hardware resources.

Second, application-specific programmes that control the events emis-
sion and reception policy run in a vm on the microcontrollers (Figure 3.4b
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in the invert video). They are compiled out of a simple scripting language,
which provides the necessary flexibility to allow the application developer
to implement the event-based behaviour.

3.2.3 Language

In aseba, we describe the robot behaviour and the events emission and
reception policy in a scripting language. We can associate some code to an
event so that the reception of the event triggers the execution of the code.
The event can come from another microcontroller through the communica-
tion bus or from an internal peripheral of the microcontroller running the
script. This association of code with events frees the programmer from
managing the code execution timing.

Syntactically, the aseba language resembles matlab scripts; semantic-
ally, it is a simple imperative programming language with arrays of 16-bit
signed integers as the only data type. Sensors’ values and actuators’ com-
mands are seen as normal variables, which enables seamless access to
the hardware. In addition to the usual if conditional, the aseba language
provides the when conditional, which is true when the actual evaluation of
the condition is true and the last was false. This allows the execution of a
specific behaviour when a state changes, for instance, when an obstacle is
closer than a threshold distance. When the vm loads a code, it considers all
when conditionals as initially false. To structure the code, the programmer
can define subroutines that can be called from any subsequent code. To
perform heavy computations, such as signal processing, microcontrollers
provide native functions implemented in C or assembler. By default, a
standard library provides vector operations and trigonometric functions;
specific functions are also available depending on the microcontroller.
Section A.1 lists the formal ebnf grammar of the aseba language.

Listing 3.1 shows an example of code that implements obstacle avoid-
ance using potential fields. This code emits events only when it detects
an obstacle and sends a preprocessed value instead of the sensors’ raw
values. To do so, the code uses the math.dot native function to compute
the value to send and the when conditional to emit it only if the activation
exceeds a threshold.

3.2.4 Integrated development environment

The efficiency of the development of a mobile robot behaviour depends
on easy inspection of what is happening inside the robot. In particular, we
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Proximity sensors microcontroller
var vectorX[24] = -254, -241, ...

var vectorY[24] = -17, -82, ...

var threshold = 600

var activation

onevent sensors.updated

call math.dot(bumpers, vectorX, event.args[0], 0)

call math.dot(bumpers, vectorY, event.args[1], 0)

call math.dot(event.args[0..1], event.args[0..1], activation, 0)

if activation > threshold then

emit ObstacleDetected event.args[0..1]

end

when activation <= threshold do

emit FreeOfObstacle

end

Left motor microcontroller
speed = 50

onevent ObstacleDetected

speed = 50 + event.args[0] - event.args[1]

onevent FreeOfObstacle

speed = 50

Right motor microcontroller
speed = 50

onevent ObstacleDetected

speed = 50 + event.args[0] + event.args[1]

onevent FreeOfObstacle

speed = 50

Listing 3.1 Example of aseba script implementing obstacle avoidance on a
marXbot robot using potential fields. The event.args array corresponds to the
payload data of the event.
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Figure 3.5 Screenshot of the aseba ide.

would like to inspect the values of the sensors, the state of the actuators
and the programme execution flow. In an event-based architecture, we
would also like to monitor the events that transit over the communication
bus.

Aseba provides an ide that fulfils these requirements (Figure 3.5). It
communicates with microcontrollers through special events. For each
microcontroller, the ide provides a tab with the list of variables, a script
editor and debug controls. The variables’ names and sizes are dynamically
enumerated from the microcontroller. The list of variables also allows
the real-time edition of the values of the sensors, the actuators and the
user-defined variables. The script editor provides syntax highlighting and
on-typing compilation, that is, the editor compiles script into bytecode
while the programmer is typing it and marks errors visually. If the
script is free of compilation errors, the programmer can run it on the
microcontroller in two clicks. An events log displays all the normal events
and their data in real time. A distributed debugger let the programmer set
breakpoints and control the execution state of each node, for instance, to
run the script step by step. If the bytecode on a microcontroller performs
an illegal operation, such as division by zero, its execution is halted, and
the faulty line is highlighted in the script editor of the corresponding tab.
The microcontrollers run one separate debugger core each, but the ide

shows a unified interface to them. Thanks to these features, the ide allows
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seamless development and debugging of all nodes in the network from a
single place.

3.2.5 Virtual machine

The aseba ide compiles scripts into bytecode and loads them to the
nodes through the communication bus. The nodes execute the bytecode
in a lightweight vm. The use of a vm instead of native code ensures safe
execution because no script mistake can disturb the low-level operations
of the microcontrollers. For instance, if an array is accessed out of bounds,
the vm will detect this access and will stop the execution of the faulty event.
Moreover, the vm provides independence towards the microcontroller’s
vendor, as any 16-bit microcontroller or better suffices to run it. The vm

can also write the bytecode into flash memory to run aseba code when
the ide is absent.

The aseba vm implements a Harvard architecture and performs com-
putations as a stack machine. Its state thus consists of programme memory
(Table 3.1), data memory (Table 3.2), stack memory, programme counter,
flags and the list of breakpoints. The vm implements events as a physical
processor would implement interrupts. In the bottom of the programme
memory, a table called events vector maps events’ identifiers with addresses.
When an event corresponding to an entry arrives, the vm executes the
corresponding code until the latter reaches a stop bytecode or until the vm

has executed too many steps.
The aseba compiler runs in the ide or in Medulla. It consists of a top-

down hand-written parser which produces an abstract syntax tree. A type
checker verifies this tree, and an optimiser performs simple improvements
such as dead-code elimination, constant array access elimination, etc. The
resulting simplified tree is transformed into bytecodes corresponding to
each event, which are linked together into the final bytecode.

Each bytecode consists of one or more 16-bit words. In the first word,
the 4 most significant bits encode the bytecode’s type; the rest and the
following words encode the bytecode’s data. The execution of a bytecode
increments the programme counter by its words count, excepted for byte-
codes performing flow control which jump otherwhere. Table 3.3 shows all
types of bytecodes. The bytecode can be flashed into the microcontrollers,
to allow a network of microcontrollers to run autonomously.

The bottom of the data memory contains the exported variables, whose
names and meanings are pre-defined per microcontroller. These include
the identifier of the microcontroller and the payload data of the last event,
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addresses (in 16-bit words) content

0x0000 evVectSize

0x0001 ev0Id

0x0002 ev0Addr

. . . . . .
evVectSize −2 evLastId

evVectSize −1 evLastAddr

ev0Addr
bytecode for first managed event

. . .
. . .

evLastAddr
bytecode for last managed event

. . .

. . .
unused bytecode

bytecodeSize −1

evVectSize is the size of events vector.
ev0Addr is the starting address of first managed event.
ev0Id is the identifier of first managed event.
evLastAddr is the starting address of last managed event.
evLastId is the identifier of last managed event.
bytecodeSize is the total number of bytecode words.

Table 3.1 The programme memory layout of an aseba vm.

addresses (in 16-bit words) content

0x0000
exported variables

. . .

exportedVarsLength
user-defined variables

. . .

. . . unused variables

. . . temporary variables to pass
variablesSize −1 constants to native calls

exportedVarsLength is the length of the exported variables.
variablesSize is the total number of variable words.

Table 3.2 The data memory layout of an aseba vm.
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name w.c. function

stop 1 stop execution
small immediate 1 push a constant (≤ 12 bits) onto the stack
large immediate 2 push a constant (> 12 bits) onto the stack
load 1 push data from memory onto the stack
store 1 pop data from the stack into the memory
load indirect 2 push data from memory onto the stack us-

ing an offset from the stack
store indirect 2 pop data from the stack into the memory

using an offset from the stack
unary arithmetic 1 unary arithmetic operation on the stack
binary arithmetic 1 binary arithmetic operation on the stack
jump 1 jump to another execution address
conditional branch 2 check a condition on the stack and jump

depending on the result
emit 3 send an event
native call 1 call a native function
sub call 1 jump into a subroutine, store return address

on the stack
sub ret 1 return from a subroutine, using return ad-

dress from the stack

Table 3.3 The types of aseba bytecodes. The w.c. column indicates the number
of 16-bit words that a bytecode of this type counts.
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interface ch.epfl.mobots.EventFilter

{

method Void ListenEvent(UInt16 eventId)

method Void ListenEventName(String eventName)

method Void IgnoreEvent(UInt16 eventId)

method Void IgnoreEventName(String eventName)

signal Event(UInt16 id, String name, Array<SInt16> payloadData)

}

interface ch.epfl.mobots.AsebaNetwork

{

method Void LoadScripts(String fileName)

method Array<String> GetNodesList()

method Array<String> GetVariablesList(String nodeName)

method Void SetVariable(String nodeName, String variableName,

Array<SInt16> variableData)

method Array<SInt16> GetVariable(String nodeName, String variableName)

method Void SendEvent(UInt16 eventId, Array<SInt16> payloadData)

method Void SendEventName(String eventName, Array<SInt16> payloadData)

method ObjectPath CreateEventFilter()

}

Listing 3.2 The D-Bus interface of the aseba network, as exported by Medulla.

but also all the variables exported by the sensors and the actuators.
The processing overhead of the vm with respect to native code is

acceptable in modern microcontrollers (Section 3.3.1). Moreover, it is a
lightweight software. In a typical dsPIC33 implementation, it consumes
10 kB of flash memory and 4 kB of ram, including all communication
buffers. We can adapt these requirements by adjusting the amount of
bytecode and variable data, stack size and number of breakpoints.

Finally, the vm is easy to understand and thus easy to adapt and
optimise. Its source code counts fewer than 1000 lines of C, including the
debugger core. Section A.2 explains the procedure to deploy aseba on
a new platform. In addition, the aseba source code, available at http:
//mobots.epfl.ch/aseba.html, provides a skeleton as well as examples.

3.2.6 Medulla, the D-Bus integration

Medulla presents the aseba network on D-Bus through a singleton
object of interface ch.epfl.mobots.AsebaNetwork (Listing 3.2). Through
this interface, a programme can retrieve information about the network,
read and write variables, load scripts into the microcontrollers or send
events. A programme can also receive events through medulla, but for the

http://mobots.epfl.ch/aseba.html
http://mobots.epfl.ch/aseba.html
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sake of efficiency this requires a bit more machinery. Indeed, in a multi-
application context, each programme is only interested in some events. To
avoid waking-up every programme each time an event is received, Medulla
implements event filtering. Each application that wants to receive events
must call CreatEventFilter() to create an event filter. The latter exports
the interface ch.epfl.mobots.EventFilter, which allows the application
to choose which events it wants to receive. The application will then
receive only those events through the Event signal.

3.2.7 Helper programmes

To ease experimentation, aseba provides several helper programmes.
They connect to Medulla throught tcp/ip. A dump programme prints the
type and the content of every message. A record programme stores every
message along a timestamp, and a replay programme can stream again
these messages, at real time or faster. A command line programme allows
the user or a script to send a message.

3.2.8 Availability

Aseba is written in C (microcontrollers) and C++/Qt (ide). It is open-
source (GPL v.3) and fully cross-platform. More information, as well as
the latest version, are available at http://mobots.epfl.ch/aseba.html.

3.3 Experiments

This section presents the experiments that test Hypotheses 3.1 to 3.4.
For each experiment, we present it, show the results and discuss the
corresponding hypothesis in the light of the results.

3.3.1 Virtual machine

As we will see in this section, the vm of aseba achieves respectable
performance, even if we have not yet micro-optimised the vm for speed.
We measured that the delay for an idle vm to react to an incoming event by
sending an outgoing event, without any further processing, is 25 µs. This
value will, however, slightly increase with the amount of event handling
code, as the vm must find the address of the specific event in a table.

If we add a for loop that does an addition 100 times, the delay between
an incoming event and the resulting outgoing one is 1.71 ms. Such a loop

http://mobots.epfl.ch/aseba.html
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Figure 3.6 The degrees of freedom of the handbot and the distribution of
functions between its microcontrollers for climbing a shelf.

executes around 1000 vm instructions, which results in a vm performance
of about 600,000 instructions per second. The dsPIC microcontroller that
we use runs at an instruction rate of 40 mips. This implies that the vm

executes 70 dsPIC instructions per vm instruction.
The aseba vm provides native functions for mathematical operations

on arrays. Using such functions to perform 100 additions between the
incoming and the outgoing events results in a delay of 60 µs. It is worth
noting that the use of the aseba vm might even increase the performance
of an application when compared to a C code from a lambda programmer.
Indeed, the vm provides native functions to compute common mathem-
atical operations such as the dot product. As modern microcontrollers
contain optimised instructions for such computations, carefully written
native functions are faster than a naive C implementation. For instance,
on the dsPIC a dot product over 100 elements programmed in C and com-
piled with maximum optimisation runs in 871 cycles. 1 The corresponding
aseba native function, which uses the multiply-accumulate instruction,
runs in 320 cycles. The dot product is probably the most used mathem-
atical operation for robot sensor processing, as it is required for vector
and matrix operations, discrete Fourier and Z transforms, digital filters,
etc. Our measures on the dot product, knowing its widespread use, prove
Hypothesis 3.1 (p. 23).

3.3.2 Application to complex mechatronics

This section presents the application of aseba to a complex mechatronic
system, the handbot climbing robot (see Section 2.3, p. 16). We show how
aseba provides distributed control for a tightly integrated behaviour

1. C30 3.11, based on gcc 4.0.3, -O3 optimisation flag
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involving multiple degrees of freedom. The handbot climbs a shelf and
retrieves a book. To help when climbing, the handbot uses a rope to
compensate for the gravity force. The handbot launches the rope before
climbing using a strong spring and a rolling mechanism.

The handbot uses four microcontrollers to climb a shelf. To move, the
handbot rotates its arms with respect to its body in alternate directions
(Figure 3.6). Every 180 degrees, the free gripper attaches to the vertical
board, and the other grip is released. The handbot repeats this sequence
until the robot reaches the height of the book, where the free gripper takes
the book. Then the handbot detaches its second gripper and goes back
down the rope (Figure 3.7). Each high-level, conceptual event such as
alternating the attached grippers translates into series of concrete events
that transit over the communication bus. For instance, to attach the left
gripper and detach the right one, the microcontrollers exchange seven
events (Figure 3.8).

Thanks to aseba, we managed to implement, debug and test the
controller for climbing a shelf in less than two days. In particular, the ide

proved its usefulness by allowing us to inspect the values of the sensors
and monitor the events in real time. Through its step-by-step mode, the
integrated debugger allowed us to easily debug the finite state machines
controlling the actions of each microcontroller. Moreover, by allowing
us to process information locally—for instance, the gripper decides itself
to close when it senses the board—aseba enabled the distribution of the
complex shelf-climbing behaviour. As a result, the handbot is able to climb
without a central computer. This validates Hypothesis 3.2 (p. 23).

3.3.3 Bandwidth savings

In this experiment, we show that aseba, by transmitting only relevant
data, consumes two orders of magnitude less bandwidth than a polling-
based approach. We measure the amount of data that aseba requires
to implement obstacle avoidance on the marXbot using the 24 proximity
sensors at 67 Hz for 1 minute. We repeat this test 120 times. We do so for
3 environments of different complexities, as shown in Figure 3.9 (left). We
have listed the full source code of the robot controller in Section B.1 (p. 139).
We compare our experimental data to the requirements of a polling-based
approach, which are the following:

b = f · ((sensors data) + 2 · (motor commands))
⇔ b = f · ((C · S + O) + 2 · (S + O))
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Figure 3.7 High-level events of a handbot climbing a shelf to retrieve a book.
The burgundy lines show the traces of the grippers. The sequence of events
is as follows: (1) the right gripper attaches, the head rotates clockwise; then
alternatively (2) the left gripper attaches, the right gripper detaches, the head
rotates counterclockwise; (3) the right gripper attaches, the left gripper detaches,
the head rotates clockwise; and finally (4) the left gripper takes the book, the
right gripper detaches, the robot goes down using the rope.
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Figure 3.8 Low-level events of a handbot attaching its left gripper and detaching
its right one. The sequence of events is as follows: (1) the left gripper detects a
vertical board; (2) the body requests the head to extend the left arm and informs
the arm; (3) when the left gripper is close enough to the board, the left gripper
instructs the head to stop extending the left arm; it begins grasping the board;
(4) when the left gripper has firmly grabbed the board, the left gripper informs
the body; (5) the body requests the right gripper to detach; (6) the right gripper
informs the head that the gripper is not grasping the board any more, and the
head retracts the right arm; (7) the head informs the body that the right arm is
detached.

where b is the required bandwidth, f is the frequency of polling (10, 25
and 67 Hz), C is the number of sensors (24), S is the number of bytes
to transmit per value (2) and O is the packet header overhead (source
identifier + message type identifier, 3).

Figure 3.9 (bottom right) illustrates visually the variance of the band-
width consumption with respect to the location of the robot. The latter is
proportional to the number of obstacles encountered by the robot. The
measures in Figure 3.9 (top right) show that, even in the most complex
environment, the median bus load is 193 times lower using aseba than
using a polling-based approach. In the worst case, aseba is still 179 times
more efficient. This excellent performance is due to the filtering that aseba

scripts perform on the raw data inside the microcontrollers. Moreover,
thanks to the use of scripting and vms, the robot application developer
can adapt the filtering code to each scenario to maximise the bandwidth
savings. These results contribute to validate Hypothesis 3.3 (p. 23).

While the savings are significant for the sensors of the marXbot base,
we expect them to be even higher in the case of high-bandwidth sensors
such as sound source detection, vision-based features detection, or laser
scanners. For instance, the dsPIC microcontroller that we use is powerful
enough to process sound in real time [71], and thus through the use of
native functions, aseba could process sound from several microphones
and report the direction of the incoming sound. Moreover, if we imagine
a robot with many sensors, it is probable that this robot would not use
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Figure 3.9 Measurement of bandwidth consumption. We performed this experi-
ment in three different environments. Top: The box plot shows the bus load in
these along with the theoretical values for polling. Bottom: Bandwidth consump-
tion of events with respect to the location of the robot in the wall environment.
The width of the white line is proportional to the bandwidth consumption.
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all of its sensors at the same time. With a polling-based approach, we
could choose not to poll some sensors. However, these sensors might
still sometimes hold information useful to the application, for instance in
abnormal situations. Using aseba, we could programme some sensors to
send data only in case of emergency condition, to save bandwidth for the
sensors currently being used. That way, all the perceptions are still taken
into account, but with a reduced bandwidth consumption. This allows to
scale the robot’s capabilities as aseba permits to integrate a lot sensors
and let them work together, sharing the bus depending on their needs of
the moment.

3.3.4 Low latency

In this experiment, we show how aseba can reduce the latency between
perception and action with respect to a polling-based approach. We show
how a faster reaction allows the robot to stop at a larger distance from an
obstacle. The experimental setup is simple: the robot goes straight on a
flat surface at 150 mm/s and stops when the robot detects an obstacle at a
distance less than or equal to 30 mm. We then measure the distance to the
obstacle where the robot has finally stopped.

The measures in Figure 3.10 show that the event-based control of
aseba allows the robot to stop precisely at a long distance away from the
obstacle. In comparison, doing polling at the sampling frequency of the
sensors, 67 Hz, results in a distance slightly smaller and more variable. We
attribute this to the delay of the transmission of the read command and to
its aliasing with the update of the sensors’ values. Because of Shannon’s
theorem, a polling rate of 134 Hz or beyond should remove these effects.
When the frequency of the polling decreases to 25 Hz, the stop distance
is clearly smaller and more variable. These effects are even more visible
when polling at 10 Hz. These results show that the event-based control
of aseba provides a reaction to input stimuli of lower latency than a
polling-based control. This allows the robot to optimise its speed while
operating safely. These results and the one from Section 3.3.3 validate
Hypothesis 3.3 (p. 23).

3.3.5 Cross-language integration

This section presents a remote control application for the marXbot
robot. This application allows a human to control the movement of the
robot using a joystick. If we limit the magnitude of the speed com-
mand, the control is safe, that is, the robot will not crash into a wall
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Figure 3.10 Measurement of latency. The robot moves towards a wall at the
speed of 150 mm/s starting from a distance of 250 mm (a). When the robot’s
front sensors detect the wall at a distance closer than 30 mm, the robot stops. We
then measure the distance d to the wall (b). The histograms show the distribution
of d.
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#!/usr/bin/perl

use Net::DBus;

use Net::DBus::Reactor;

# gets stub of ASEBA network

my $bus = Net::DBus->session;

my $asebaService = $bus->get_service(’ch.epfl.mobots.Aseba’);

my $asebaNetwork = $asebaService->get_object(

’/’, ’ch.epfl.mobots.AsebaNetwork’);

# loads scripts

$asebaNetwork->LoadScripts($ARGV[0]);

# creates an event filter and listen for an event

my $eventFilterPath = $asebaNetwork->CreateEventFilter();

my $eventFilter = Net::DBus::RemoteObject->new(

$asebaService, $eventFilterPath, ’ch.epfl.mobots.EventFilter’);

$eventFilter->ListenEventName(’SetSpeed’);

$eventFilter->connect_to_signal(’Event’,

sub {

# print the event

my ($id, $name, $payloadData) = @_;

print ’Event ’ . $id . ’/’. $name . ’: ’;

for my $value (@$payloadData) {

print "$value ";

}

print "\n";

}

);

# starts event loop

my $reactor = Net::DBus::Reactor->main();

$reactor->run();

exit(0);

Listing 3.3 A Perl programme to load an aseba script and to log an event. This
programme uses the libnet-dbus-perl library.
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#!/usr/bin/python

import dbus

import dbus.mainloop.glib

import glib

import gobject

import pygame

def dbusReply():

pass

def dbusError(e):

print ’dbus error:’

print str(e)

loop.quit()

def scanJoystick():

global ox, oy

pygame.event.pump()

x = joystick.get_axis(0) * 60

y = -joystick.get_axis(1) * 60

if x != ox or y != oy:

asebaNetwork.SendEventName(’SetSpeed’,

[y+x, y-x], reply_handler=dbusReply, error_handler=dbusError)

ox = x

oy = y

# reschedule scan of joystick

glib.timeout_add(20, scanJoystick)

if __name__ == ’__main__’:

# inits main loop and joystick

dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)

pygame.init()

joystick = pygame.joystick.Joystick(0)

joystick.init()

ox = 0

oy = 0

# gets stub of ASEBA asebaNetwork

bus = dbus.SessionBus()

asebaNetworkObject = bus.get_object(’ch.epfl.mobots.Aseba’, ’/’)

asebaNetwork = dbus.Interface(

asebaNetworkObject, dbus_interface=’ch.epfl.mobots.AsebaNetwork’)

# schedules scan of joystick

glib.timeout_add(20, scanJoystick)

# starts event loop

loop = gobject.MainLoop()

loop.run()

Listing 3.4 A Python programme to send speed commands. This programme
uses the python-gobject, python-dbus and python-pygame libraries.
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regardless of the command from the human. This applications uses three
events: SetSpeed allows the human to control the robot’s movements,
while ObstacleDetected and FreeOfObstacle allow the robot to avoid
obstacles regardless of the control command. These last two events allow
to transmit data from the proximity sensors to the motors only when there
is an obstacle. This lowers the bus bandwidth and reduces the processing
load on the motor microcontroller, compared to a polling-based approach.

This application illustrates the vertical integration that aseba allows.
At the low level, distributed among three microcontrollers, three aseba

scripts implement the obstacle avoidance and its fusion with the control
command (Listing 3.1). This script uses the ring of proximity sensors
around the robot to detect obstacles in any direction. At the Linux level, a
Perl programme loads this script, and then dumps all the SetSpeed events
using an event filter (Listing 3.3). A Python programme sends SetSpeed

events to the microcontrollers given a joystick command (Listing 3.4). This
application shows that thanks to its vm and Medulla, aseba allows a
straightforward scripting of the robot’s behaviour at all levels. This proves
Hypothesis 3.4 (p. 23).

3.4 Discussion

The development of our robots taught us that the shared communic-
ation bus and its use are critical for the performances. Aseba solves the
bus overloading problems by delegating to the microcontrollers the task
of filtering raw data. We could further improve the scalability of aseba by
segmenting the bus. Indeed, the compiler knows the source and destina-
tions of all events. So the compiler could create routing tables such that
events do not transit over segments of the bus that contain no destination.
This does not apply to multi-master buses such as can, but would be of
great interest for custom-tailored systems, such as the ones based on fpga.
Using a robust communication bus, an event-based approach could also
enable the creation of a fail-safe behaviour by using redundant hardware
modules, as [28] showed.

Our results show that a safe, event-based scripting language is a sound
approach to the programming of real-time embedded systems. This ques-
tion was raised in the computer science literature [63], and aseba provides
an affirmative answer to it. We could further increase the performances
of aseba. Indeed, we could improve the compiler so that it proves more
facts about the programme. For instance, the optimiser could remove the
boundary checks on array access in most cases. We could add timing
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analysis to prove that events would execute within a specified duration.
In computer science, the field of research known as functional reactive
programming proposes a theoretical approach to such challenges [54].
It would be interesting to explore whether and how the latter would
apply to networks of microcontrollers. This would require a complete
re-engineering of the language. Without such a radical redesign, we could
still improve the language of aseba. It is currently limited by its data types,
which consist only of 16-bit integers and arrays. While this allows the
embedding of the vm into most of the existing microcontrollers, it limits
the types of data that Linux programmes can exchange through aseba.
We could extend the language by adding more basic types (floating point
values, 32-bit integers, etc.) and arbitrary data structures. If aseba would
implement the same set of data structures as D-Bus does, we could further
hide the difference between microcontrollers and Linux programmes. This
would correspond to strongly typing events as in [64]. However, we must
keep in mind that much of the ease of programming in aseba comes
from the static memory allocation of data inside the vm. The compiler
knows the address of each variable globally, which allows the compiler to
perform useful checks at compile time. Some richer data structures, for
instance those requiring dynamic memory allocation, would reduce the
user-friendliness of the environment. We could alleviate this drawback
by adding run-time checks and by improving the reasoning done by the
compiler. While the former would reduce the execution speed and increase
the bytecode size, the second is promising but requires state-of-the-art
techniques from research in compilers. Moreover, it might not be desirable
to lure the user into thinking that she is working with workstation-level
processors, where floating-point operations are cheap and the memory is
virtually unlimited.

We have discussed aseba in the context of miniature robots, but the res-
ults that we present apply to larger robots—or to industrial installations—
as well. In these contexts, the distribution of the processing could also
improve energy efficiency, because useless data are pruned early. To be suit-
able for industrial applications driving large–and potentially dangerous—
pieces of equipment, aseba should provide execution timing guarantees.
It is possible to improve the compiler such that it proves timing constraints
for a subset of possible programmes, and notifies the developer when it
cannot [53]. However this is difficult to do in general, also because in the
analysis of the compiler should consider the timing constraints/guaran-
tees of the communication bus. Addressing these challenges would be a
rich research direction based on the foundation laid down by aseba.
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3.5 Conclusion

The experimental performances of aseba running in physical robots
demonstrate that a modular, distributed and event-based architecture
is a pertinent solution to programme the behaviour of multi-processors’
embedded systems. Moreover, our results show that applying such archi-
tecture for low-level control improves complex robots in multiple ways.
The closeness to the hardware allows fast reactivity to environmental
stimuli. The exploitation of peripheral processing power enhances the
scalability by filtering raw data and by implementing reflex-like control
locally. This provides better behavioural performances for a given hard-
ware, and allows a smaller, cheaper and less energy-consuming hardware
to be used for equal performances. The exploitation of microcontrollers’
processing power also offloads the central computer, when it is present. This
leaves time for tasks such as path-planning or reasoning. Thanks to the
easy to use scripting language and the ide, aseba brings these advantages
without compromising the flexibility nor diminishing the efficiency of
the development process. At the level of the central embedded computer,
aseba seamlessly interacts with other programmes through its integration
with D-Bus, the Linux standard messaging middleware. One can thus
script the high-level behaviour using languages such as Python or Perl.
Therefore, aseba allows vertical integration between the various software
layers of a multi-microcontrollers robot and brings the flexibility and
reusability of middleware deep into the robot’s mechatronic.

We have validated all our hypotheses by experiments with physical
robots. As a contribution to the fundamental hypothesis of this thesis,
Hypothesis 1.1 (p. 2), aseba shows that building a software control archi-
tecture knowing the electronic constraints of the robot greatly improves
the capabilities of this robot.
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Chapter 4

Global optimisation for SLAM

Most research works on slam concentrate on the mathematical formu-
lation of the slam problem and do not address the integration questions.
Typically, relatively large robots (> 50 cm) embed expensive industrial
laser scanners [95]. Recently, some works have explored the use of vision
as an alternative to laser scanners [67, 96]. Cameras are compact and
passive sensors, and so are well-suited for integration into small mobile
robots. However, visual slam requires an environment populated with
well-illuminated features and a large processing power [86]. Some ap-
plications do not enjoy such excellent conditions, and must fall back on
distance measurements to perform slam. For instance search and rescue
robots often operate in dark environments with no clear visual features.
We therefore believe that there exists a strong need for non-visual slam

techniques that one can integrate into cheap, small and low-power robots.
To integrate slam within a compact robot with modest sensor quality,

it is important that the parameters of the robot’s motion model are correct.
For instance, if the values of the error model are not correct, the slam

algorithm might diverge. Moreover, as the computational power is also
limited, we must allocate at best the processing resources to the different
steps of the slam algorithm. However, the relation between the different
parameters is complex and non linear. To find these parameters, we pro-
pose to use an evolution strategy [8], which is a robust global optimisation
method. Our hypothesis is that this optimisation exploits at best the
capabilities of the robot, and thus allows slam on small, inexpensive and
low-power robots.

Hypothesis 4.1. A global optimisation of the robot’s intrinsic parameters and of
the allocation of processing resources allows real-time slam on small, inexpensive
and low-power robots.
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Figure 4.1 The slam part within the bloc scheme of the autonomous construc-
tion application.

This chapter presents our slam implementation, details the global
optimisation methodology and gives experimental results that validate
this hypothesis. It also shows the contribution of the slam results to the
main hypothesis of the thesis. Figure 4.1 shows the slam algorithm in
the context of the autonomous construction application. By providing
absolute positioning, the slam algorithm forms the basis of the perception
subsystem.

4.1 Related work

The reliance of most slam implementations on bulky and expens-
ive laser scanners hinders their diffusion into small and cost-effective
robots. Several projects have therefore explored the use of cheap and
low-resolution distance sensors for the slam.

Schroter et al. [92] used the array of sonar sensors which equips the
SCITOS A5 robot. Their work focused on reducing the memory footprint
of particle-based gridmap slam by sharing the map between several
particles. The resulting implementation runs in real time on laptop-level
computers.

Yap et al. [118] also used sonar sensors. They worked with the Activ-
Media P3-DX robot, which has less sensors than SCITOS A5. To cope with
this sparseness, their slam implementation uses a map of line segments
instead of a gridmap. Together with a strong assumption that the walls
are orthogonal, their solution was able to reconstruct large indoor envir-
onments. Their article does not report any performance measurement. In
the same direction, Abrate et al. [1] used line extraction to apply slam

to a Khepera II robot, which only embeds 8 short-range infrared proxim-
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ity sensors. Like in the work of Yap et al., the environment consists of
orthogonal walls, in this particular case only in small numbers.

These projects are representative of a line of research which focuses on
developing slam algorithms that fit the features of specific sensors. They
all succeed in performing slam in loopy environments thanks to robust
algorithms. However, these are too computationally intensive to run in an
embedded computer, requiring at least laptop-level performances. Gifford
et al. [41] have proposed a global approach to address these limitations.
They have both designed a robot and implemented a distributed slam

algorithm which uses a scanning sensor. Their slam algorithm uses a
particle filter, and they report real-time performances using 15 particles
and 3 seconds per update. The authors conclude that their scanner, a
simple set of infrared distance sensors mounted on top of a servomotor,
does not provide enough information in sparse environments. They also
underline the difficulty in finding the right slam parameters to fit within
the available computational power. Recently, Grzonka et al. [45] performed
slam experiments on an autonomous indoor flying robot. Albeit they
use a laser scanner, their slam implementation runs in real time on the
computer of their small flying robot.

Our contribution is to use a global optimisation algorithm to find the
intrinsic parameters of the robot’s motion model and to allocate processing
resources. We have implemented FastSLAM 2.0 using the slim and inex-
pensive rotating distance scanner of the marXbot (see Section 2.2.3, p. 14),
thus fitting the size and cost requirement. The resulting algorithm runs
faster than real time on the marXbot robot.

4.2 Model and implementation

We have adapted FastSLAM 2.0 [75] to the specificities of our hard-
ware (see Section 2.2.3). This slam implementation estimates the pose of
the robot and incrementally builds a 2D occupancy-grid map [29] of its
surrounding environment. A time step corresponds to a full 360° scan by
the rotating scanner (half a turn). Each cell of the occupancy-grid map
holds the log odds ratio of the belief that this cell is an obstacle [108, p.
94, p. 286]. Our slam algorithm consists of a particle filter, where each
particle k at each time step t contains the robot pose xt = (x, y, θ)T, the
associated weight wt and a full map of the environment mt. The algorithm
updates these three values with the new measurements acquired by the
scanner in four phases. These phases are:



52 h SLAM

A. the pose update (Section 4.2.1),

B. the measurement to map matching (Section 4.2.2),

C. the occupancy-grid update (Section 4.2.3),

D. the particles resampling (Section 4.2.4).

4.2.1 A. Pose update

The rotating scanner only produces enough data for a relevant map
matching every half turn. Moreover, we must perform the estimation of
the robot pose at the same rate as the measurement to map matching.
Yet during a half turn of the scanner, the robot receives several odometry
measurements. To cope with this discrepancy, we store all the measure-
ments and delay the computation of the robot pose. To compute the
pose, we reconstruct the trajectory by iteratively applying the odometry
measurements.

The update of the pose x[k]
t knowing the pose at the previous time

step t− 1 and the command ut (odometry measurements) that steered the
robot between the two time steps is described by the motion posterior:

p(xt|x[k]
t−1, ut) (4.1)

The marXbot is roughly equivalent to a differential wheeled robot at the
level of the motion model. We approximate this motion model by an
odometry model in which we decompose the interval (t− 1, t] into an
initial rotation δrot1, a translation δtrans, and a final rotation δrot2. We can
directly get δtrans from the motors’ encoders as the average of displacement
of each treel. However, the tracks introduce non-linear slipping depending
on the speed, the acceleration and the type of surface. The slipping
particularly affects the odometry when the robot rotates. We therefore
use the gyroscope integrated in the base of the marXbot to measure the
changes in orientation.

4.2.2 B. Measurement to map matching

We compute the weight of a particle w[k]
t which is proportional to the

likelihood of the measurement zt:

w[k]
t ≈ p(zt|x[k]

t , m[k]) (4.2)

To compute the likelihood of each measurement, we project 4 rays
oriented like the 4 sensors of the scanner at the time of the measurement



Model and implementation h 53

onto the particle’s internal map and compare the distance measured by the
sensor and the one found by reading the map. We back-propagate all the
measurements along the trajectory computed at phase A such that match-
ing is done with the estimated robot pose at the time of the measurement.
The final likelihood is the product of the likelihood of each measurement
along the trajectory of the robot in (t− 1, t]. Since the response functions
of the sharp sensors are not injective (Figure 2.6, p. 15), we ignore their
values when they correspond to invalid distances. The probabilistic nature
of the map is sufficient to disambiguate wrong readings from correct ones.
We manage to cover the whole (0, 1] m range by dropping the values of
short range sensors over 35 cm and the values of long range sensors below
35 cm.

We optimise the robot’s pose knowing the measurement by performing
a scan-matching step using a small Monte-Carlo localisation. For each
particle, we explore a small space around the final pose computed in phase
A, following a Gaussian distribution. We perform the measurement to
map matching for each candidate pose and keep the best match. This
operation improves the positioning, and is comparable to having more
particles, yet without the memory expense of one distinct map per particle.
However, we must project more rays per particle.

4.2.3 C. Occupancy-grid update

We compute the map m which is represented by the posterior:

p(m|x1:t, z1:t) (4.3)

We represent m by the set of all grid cells m = {mi}, where mi is a
binary random variable with p(mi = 1) representing the probability that
an obstacle occupies a cell. This independence assumption allows us to
approximate the posterior of the map:

p(m|x1:t, z1:t) = ∏
i

p(mi|x1:t, z1:t) (4.4)

Note that for simplicity and for compatibility with the literature we use a
single index i but remember that the map is two-dimensional. Each cell
holds the log odds ratio of the probability that it contains an element [108,
p. 94, p. 286], with a resolution of 16 bits:

lt,i = l(mi|x1:t, z1:t) = log
p(mi|x1:t, z1:t)

1− p(mi|x1:t, z1:t)
(4.5)
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Figure 4.2 The update function, whose values are added to the occupancy-grid
map.

This implementation choice is convenient because computing the posterior
given a measurement corresponds to summing the log odds ratios:

l(mi|x1:t, z1:t) = l(mi|zt) + l(mi|x1:t, z1:t−1)− l(m0) (4.6)

where l(m0) is the log odds ratio of the prior probability that an obstacle oc-
cupies the cell, l(mi|x1:t, z1:t−1) the previous value of the cell, and l(mi|zt)
the probability that an obstacle occupies the cell given the most recent
measurement. Note that the trajectory x1:t is known within a particle and
that l(m0) = 0 because we choose 0.5 for the prior probability of a map
cell to be an obstacle.

For the sake of efficiency, we update the map for each sensor meas-
urement using a pre-computed update function dependent on the sensor
value (Figure 4.2). We have pre-computed tables for all sensors values for
every sensor (512 kB of data). These tables store l(mi|zt). Like in phase
B, we cast a ray from the estimated robot pose into the direction of the
measure. On this ray, the update function adds information that cells
before the measured distance are free of obstacles and that cells at the
measured distance are occupied by an obstacle. It adds no information
to cells beyond the measured distance. We back-propagate the estimated
poses of the measures along the robot trajectory in (t− 1, t].

4.2.4 D. Particles resampling

The particles resampling frequency is a parameter of our algorithm.
When it resamples particles, the algorithm first sorts them according to
their weight. It then draws a new set of particles out of the previous set,
with a probability proportional to the weight of the particle. The new
set may contain many times the same particle, as particles with a large
weight have a strong probability to be drawn more then once. However,
as the pose update step introduces randomness, the particles will quickly
differentiate.
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Figure 4.3 The experimental setup for slam experiments

4.3 Experimental methodology

4.3.1 Measuring the quality of slam

We run experiments in a room with an overhead camera connected to
a robot tracker (Figure 4.3). We built the tracker using libfidtrack from
the reacTIVision project 1 [7]. The tracker and the robot share a common
aseba network so we simply use the aseba logging facility to record the
estimated robot poses along their ground truth. The tracker also measures
the experiment time and records images of the arena for further analysis.
The tracking camera has a resolution of 3000×2208 pixels. This camera
covers an area of approximately 4×3 meters. To calibrate the tracker, we
have placed the robot at 12 different known positions (approximately the
centres of each squared meter). Then, we have optimised the parameters
of the camera projection matrix using a global optimisation algorithm. The
average error for the known positions, at the end of the optimisation, is
4 mm. The maximum error is 25 mm.

We measure the quality of the slam by comparing the average squared
difference between the reconstructed trajectory of the best particle and
the real trajectory (Tslam = {T i

slam} and Treal = {T i
real}, for i iterating over

ST = |Tslam| = |Treal| tracked positions). However, as both trajectories are
expressed in different coordinates, we must first find the set of paramet-
ers θT = {θα, θd} for the transformation A(T i

slam, θT) = R(θα)T i
slam + θd

(knowing that R(x) is 2D rotation matrix of angle x) to minimise the

1. http://reactivision.sourceforge.net/

http://reactivision.sourceforge.net/
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distance:

d(Tslam, Treal, θT) =
ST

∑
i
(‖A(T i

slam, θT)− T i
real‖2) (4.7)

We find the optimal set θ̂T:

θ̂T = argmin
θT

(d(Tslam, Treal, θT)) (4.8)

We implement the argmin optimisation using a simple evolution strategy [8]
using 32 individuals over 128 generations. This evolution strategy operates
on the real-valued space of θT. We do not perform self-adaptation, and
after each generation, we keep the best 25 % individuals. For each of
these individuals, we make three mutated copies to replace the discarded
75 % individuals. During evolution, we perform simulated annealing by
varying the mutation factor from 100 % to 20 %. The initial values are
0 for all elements of θT. For mutations, the standard deviation of the
normally-distributed added value is 50 for all elements of θT. The quality
of the trajectory is the inverse of the mean of the residual errors:

q(Tslam, Treal) = − 1
ST

ST

∑
i
(‖A(T i

slam, θ̂T)− T i
real‖2) (4.9)

4.3.2 Optimising parameters for the slam algorithm

The slam algorithm depends on multiple parameters (Table 4.1). A
first set of parameters is related to the error model of the motion model
of the robot. They are the constant error, the proportional error, and the
minimal uncertainty on pose. A second set of parameters concerns the
processing power allocation policy. We have observed that tracing rays
on the map consumes most of the processing power (>95 %). Thus to
perform slam in real time we have a limited ray budget. On the marXbot,
when performing 1.5 scan/s, this budget is 65000 rays per scan for a load
of 100 %. The parameters related to this budget allocation are the particle
count, the minimal angle between scans for measurement to map matching
and the particle resampling frequency. The minimal angle between scans
allows the scan-matching algorithm to match only a subset of the acquired
scan data, to improve the speed of the matching process. This corresponds
to resampling the scan data in polar coordinates.

These parameters affect the quality of the slam, but they are not ob-
vious to measure nor compute. We thus propose to learn them from
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parameter initial
value

mut.
σ

best
of

best
of

best
of

best
of

ray budget n.a. n.a. 8125 16250 32500 65000

dist. error ratio 0.05 0.01 0.13 0.10 0.10 0.12
dist. error const 0.01 0.002 0.014 0.010 0.016 0.006
angle error ratio 0.05 0.01 0.045 0.002 0.064 0.10
angle error const .01° 0.002° 0.01° 0.01° 0.02° 0.01°
min pos uncertainty 2 0.4 0.41 0.28 0.02 0.05
min angle uncertainty 5° 1° 4.3° 6.9° 8.4° 0.98°

particle resampling f. 1 0.5 1 1 2 5
angle between scans 0 2.5° 1.9° 2.9° 1.8° 3.7°
number of particles 1 1 1 1 1 1

Table 4.1 Parameters for the slam algorithm (left) and their values after op-
timisation (right, best individual of last generation). The particle resampling
frequency is irrelevant when the particle count is 1.

experimental data. Our experimental setup allows the recording of the
robot’s odometry and scanner data (Figure 4.3). We have synchronised
the tracker with this telemetry using aseba, which allows us to replay
any experiment with any set of parameters. We utilise this feature to
optimise the set of parameters. To do so, we implement a simple evolution
strategy [8]. This evolution strategy operates on the real-valued space of
the parameters. We do not perform self-adaptation, and after each gen-
eration, we keep the best 25 % individuals. For each of these individuals,
we make three mutated copies to replace the discarded 75 % individu-
als. During evolution, we perform simulated annealing by varying the
mutation factor from 100 % to 20 %. Table 4.1 gives for every parameter
its initial value and the standard deviation of the normally-distributed
mutation added value. Note that we evaluate an individual over several
runs. For each run, we evaluate the quality of its reconstructed trajectory
using Equation 4.9. To do so, we find θ̂T for each run using the method
we explained in Section 4.3.1.

The quality measure q(Tslam, Treal) from 4.9 is well suited for human
interpretation. However, it is highly non-Gaussian: if the robot looses itself
during the map creation, the quality will be orders of magnitude worse
than in a successful map reconstruction. To alleviate this effect, we let the
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Figure 4.4 The different experimental environments (top), and the maps built
by our slam implementation (middle), using a budget of 65000 rays. The slam

trajectory is in light red while the real trajectory (tracker) is in dark blue. The
bottom shows the map reconstruction while ignoring the phase B (measurement
to map matching) of our algorithm.

evolution strategy minimise the following term instead of the quality:

e(Tslam, Treal) = log(1− q(Tslam, Treal)) (4.10)

This results in a smoother evolution, because we evaluate each parameter
set over 5 recorded experiments in three different environments and take
the mean in a log scale.

4.4 Results

We run 5 experiments of 5 minutes each, in 3 different environments
(Figure 4.4). We let the marXbot move freely and avoid obstacles using its
short range proximity sensors. We recorded the robot’s scans, odometry
and absolute position from the tracker. We then evolved the parameters
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Figure 4.5 Optimisation of the parameters for different ray budgets. We have
evolved populations of 48 individuals, over 40 generations, by evaluating each
parameter set over 5 recorded experiments for 3 different environments. The top
plots show the four evolutions. The black line represents the median and the
grey area represents the interquartile range of the quality (see Equation 4.9). The
bottom boxplot shows a comparison of the last generation.



60 h SLAM

ray budget: 16250 32500 65000

8125 rays; 12.5% of robot’s CPU 6.6e-7 2.1e-14 2.2e-16
16250 rays; 25% of robot’s CPU 1.0e-4 2.2e-16
32500 rays; 50% of robot’s CPU 6.1e-11

Table 4.2 P-values of the Mann–Whitney U statistical test between all individu-
als of the last generation of evolutions for different ray budgets. The alternative
hypothesis is that the error on trajectory reconstruction is the same for different
ray budgets.

corresponding to allocating 1, 1
2 , 1

4 , and 1
8 of our processing budget to

slam. As Figure 4.5 shows, allocating more processing resources leads to
statistically significantly better maps (Table 4.2).

The evolution was free to use several particles, to the expense of
the quality of the robot’s pose optimisation during phase B of the slam

algorithm. Yet the evolution always kept a single particle, and adapted the
minimum uncertainty on position in regards to the available computational
power (Table 4.1). The more rays were available, the smaller uncertainty
the evolution kept. It seems that in our setup, a small number of particles
do not hold enough different possibilities to be worth the investment
in computational power. Moreover, the scan-matching step reduces the
need for particles, as it locally simulates several particles. We cannot
rule out that a longer evolution, with a larger population, and with more
experiments per evaluation would lead to the use of more particles.

All our environments are small, with respect to the range of the rotating
scanner. It would be interesting to allow more computational power and
to increase the size of the environment to see when multiple particles
would get used. In particular, in environments with large open areas, scan-
matching would not be enough to maintain the consistency of the map. In
these cases, the robot would have to solely rely on odometry to estimate
its pose, and multiple particles would be very helpful to track multiple
location and map hypotheses. Unfortunately, the minimum number of
particles to correctly reconstruct such environments will increase with
the size of the environment, in particular with the size of the open areas.
A finite number of particles would not solve such situations in general,
adding more particles would only extend the set of environments in which
the slam algorithm works.

At the qualitative level, we see that all our three environments are
well reconstructed (Figure 4.4). One exception are the corners, which our
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scanner tend to see as holes in the walls. This is due to the orientation
of the sharp sensors and their triangulation-based distance measurement.
Corners create reflections which lead to wrong readings from the sensors.
We could alleviate this effect by mounting the sensors vertically, but that
would triple the height of the scanner. We could also post-process the grid
map knowing that walls are flat [118] and thus work around the problem
of the corners. Finally, if the robot physically approaches the corners, it
can use its proximity sensors to see the walls and thus to compensate for
the missing information from the scanner.

Several researchers have proposed to take profit of a global optimisa-
tion algorithm to perform slam [26,32]. However, these works employ the
algorithm to estimate the posterior probability distribution over trajectories
or maps, which is taken care by our particle filter. To our knowledge, there
is no previous work about the use of a unified optimisation algorithm to
find the parameters of the robot’s motion model and to allocate processing
resources.

4.5 Lessons learnt

The choice of orienting the sensors horizontally, to save vertical space,
has the effect of introducing important errors in the perception of the
corners, as seen in Figure 4.4. Given that all obtuse angles are not seen
correctly, we think that the orientation choice for the sensors was sub-
optimal.

While developing the slam algorithm, we have noticed that constant
bias are critical for the convergence of the algorithm. At some point in the
development, we made a sub-pixel rounding error in the transformation
between the integer map pixel and the floating-point world coordinates.
This error prevented the convergence of the slam, as it created drifts in
the map. This example highlights the difficulty of developing complex
algorithms for real robots, for which one must consider both their abstract
mathematical properties and the tiny details of their implementations.

4.6 Conclusion

In this chapter, we have demonstrated a global optimisation of a robot’s
intrinsic parameters and of the allocation of processing resources. This
optimisation allows an inexpensive sensor coupled with a low-speed
processor to perform slam in simple environments in real time, which
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validates Hypothesis 4.1 (p. 49). We note that the optimisation has opted
for a single-particle slam, thus using solely scan matching to build a
consistent map. It would be interesting to increase the ray budget and the
difficulty of the environment to see when the optimisation would switch
to multiple particles and how many it would use. Unfortunately we do
not have the physical space for much larger areas nor do we have the time
and the computational resources to conduct such a research, as optimising
over the parameter space demands a lot of computing power. In the
current setup, for each individual of each generation, the optimisation
must run 15 slam of 5 minutes each. Nevertheless, the fact that the
optimisation decided to drop the particle filter in favour of a robust scan
matching is a major contribution to the fundamental hypothesis of this
thesis, Hypothesis 1.1 (p. 2), because the structure of the world and the
processing-power constraints did influence the core of the algorithm.



63

Chapter 5

Semantic maps and symbol
grounding

In the previous chapter, we have seen that the slam algorithm is able
to build a map of the environment. In the case of the marXbot and the
rotating distance scanner, this map is an occupancy grid showing whether
there are obstacles at the height of the scanner (9 cm). However, there is a
richer variety of elements in the world than what the scanner is able to
capture. In particular, to build an application beyond simple exploration,
the marXbot must use its diverse sensors to perceive the environment.
As the final demonstration of this work, we are interested in enabling
the marXbot to autonomously build structures in a world of unknown
geometry and topology (Chapter 7). In this chapter, we show how to
combine together the outputs from the slam algorithm and from the
different sensors to build a representation of this environment (Figure 5.1).

HTN planning

order from human

execution

low-level control

perception

actuatorssensors

Figure 5.1 The semantic-map part within the bloc scheme of the autonomous
construction application.
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As we can see in Figure 5.2 (top), the terrain consists of multiple areas,
separated by valleys of different widths and depths. The robot knows that
the smaller the width of the valleys the shallower their depths. It uses this
information by planning bridges where the distance between two areas
is the closest. The environment also contains resources, which are small
cubes of expanded polystyrene.

The aim of the perception subsystem is to create a symbolic repres-
entation of the world that is grounded in reality. Indeed, to reason about
the world the robot needs a symbolic representation, but to execute the
results of this reasoning this representation must be linked with geometric
information. This leads to a dual symbolic-geometric representation of the
world in which symbols are grounded by geometric data. We think that
for our application, this representation is the best suited:

Hypothesis 5.1. A dual symbolic-geometric representation of the world fits the
needs of a construction scenario.

This model is similar to what other researchers working on semantic
maps have proposed [59, 79, 119]. However, probably because in these
works the robot does not manipulate the world, it does not keep as much
geometric information as our robot does. Moreover, the software presented
in these works is not designed to run on embedded processors, so they
are relatively free to use heavy computations, where in our case we must
take into account the limitations of our embedded processor.

5.1 The perception process

As Figure 5.3 shows, the perception process is made of three layers
of increasing abstraction. The first layer consists of three probabilistic
maps, for the walls, the valleys and the resources. For the second layer, we
combine the maximum likelihood estimations of the probabilistic maps to
create two segmentation maps, one for the ground areas and one for the
resources. The third layer contains the dual symbolic-geometric represent-
ation. We build the latter by analysing and filtering the segmentation maps
to extract symbolic elements, representing the areas, their connectivity, the
resources, their associated area and the robot itself.

5.2 Probabilistic maps

The lowest layer of perception consists of three probabilistic maps.
These maps are two-dimensional occupancy-grid maps [29] of walls, val-
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Figure 5.2 The environment of which the marXbot builds a representation. Top:
a photography of the real arena, the black zones are valleys. Bottom: a screenshot
of the software which builds a representation of this environment. The solid
areas represent the two sides of the valley. The small black circles represent the
resources. The blue circles are located on the centres of mass of the areas and
their radius are proportional to the surfaces of the areas.
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valleys
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Figure 5.3 The three layers of the perception process

leys and resources. They have a spatial resolution of 2 cm. We represent
each map m by the set of all grid cells m = {mi}, where mi is a binary
random variable with p(mi = 1) representing the probability that the cell
i contains the corresponding element: a wall, a valley or a resource. Note
that for simplicity and for compatibility with the literature we use a single
index i but remember that the maps are two-dimensional. We assume that
each cell is independent, which allows us to approximate the posterior of
the map as:

p(m) = ∏
i

p(mi) (5.1)

This assumption is a major simplification of the reality, because most
objects and free areas span multiple cells. However, a more refined
assumption would greatly complicate the probabilistic model; for this
reason, most works in the literature employ this simplistic assumption.
For the same reason, we use it as well. At the implementation level,
each cell holds the log odds ratio of the probability that it contains an
element [108, p. 94, p. 286], with a resolution of 16 bits:

l(mi) = log
p(mi = 1)

1− p(mi = 1)
(5.2)

This implementation choice is convenient because computing the posterior
given an observation corresponds to summing the log odds ratios. If o1:t

is the vector of all observations, with ot the observation at time t, then:

l(mi|o1:t) = l(mi|ot) + l(mi|o1:t−1)− l(m0) (5.3)

where l(m0) is the log odds ratio of the prior probability that an element
occupies the cell, l(mi|o1:t−1) the previous value of the cell, and l(mi|ot)
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the probability that an element occupies the cell given the most recent
observation. As all cells are independent, in the rest of this chapter we
will omit the index i when discussing operations on maps that apply to
every cell.

The log odds representation cannot express complete certainty, as
limp(X=1)→0 l(X) = −∞ and limp(X=1)→1 l(X) = ∞. Thus, we choose a
small value ε that corresponds to the smallest probability that we can
express with our representation. The choice of ε leads to bounds for l:

p(X = 1) < ε =⇒ l(X) = lmin

p(X = 1) > 1− ε =⇒ l(X) = lmax
(5.4)

Often the probability to observe something with a sensor depends on
what has been sensed by another sensor. For instance, when an infrared
proximity sensor detects an obstacle, this reading may be due to a resource
or to a wall. In this case we must use the wall map to disambiguate the
reading. Formally, in this example the probability to detect a resource is
the product of the probability to detect an obstacle and the probability
that this obstacle is not a wall: p(resource) = p(obstacle) (1− p(wall)).
Albeit this formula is simple, it does not take a simple closed form when
expressed in log odds ratio. Indeed, given three binary random variables
X, Y, Z, such that p(Z = 1) = p(X = 1)p(Y = 1), there exist no real
numbers a, b, c such that l(Z) = a · l(X) + b · l(Y) + c. However if we take
a = 1, b = 1 and c = lmin, we can approximate the l(Z):

p(Z = 1) = p(X = 1)p(Y = 1) =⇒ l(Z) ≈ l(X) + l(Y) + lmin (5.5)

Figure 5.4 shows the superposition of the true and the approximate l(Z).
These two functions are not too different, in particular around l(Z) = 0,
which means that there are only few cases where the belief is increased
when it should be decreased, and reversely. Because it only performs two
additions, the approximate function is very fast, and thus well-suited for
real-time processing on a real robot. In our implementation of sensor data
fusion, we use the approximate function instead of the true function.

5.2.1 Sensing and data fusion

We create the three maps by fusing the data of the multiple sensors
shown in Figure 2.4 (p. 12). The wall map is the output of the slam

algorithm, which is explained in Section 4.2 (p. 51). The valley map is
the result of the fusion of the wall map and the outputs of the ground
sensors and the vision. The resource map is the result of the fusion of the
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Figure 5.4 Simplification of the log odds ratio for the product of probabilities.
Given three binary random variables X, Y, Z such that p(Z = 1) = p(X =
1)p(Y = 1), these plots show true and the approximate l(Z). Left: the true
function in solid rainbow, the approximation in shaded. Right: the approximation
in solid rainbow, the true function in shaded.

wall map and the outputs of the proximity sensors and the vision. The
ground and proximity sensors provide short range information, but with
a high confidence and a quick refresh rate. The vision provides long range
information, but at a slower pace with a lower confidence than infrared
sensors.

5.2.2 Ground sensors

There are 8 infrared proximity sensors distributed around the marXbot
and directed towards the ground. These sensors give information about
the presence of valleys at close range. The marXbot uses these sensors to
avoid valleys and update the valley map.

5.2.3 Proximity sensors

The marXbot has a ring of 24 outward proximity sensors that perceive
obstacles at a height of about 6 cm. In our setup, these obstacles can either
be walls or resources. Formally, the probability to see a resource is:

p(resource = 1) = p(obstacle = 1)(1− p(wall = 1)) (5.6)

We implement this product using the approximation from 5.5, looking up
into the wall map to update the resource map.
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5.2.4 Vision

We use vision to locate resources and to detect valleys at long range
(> 40 cm). This is possible because we know that the ground is flat and
that the resources are cubes with a height of 6 cm, always located on the
ground. Let R be a three-dimensional frame of reference centred on the
robot, with x and y in the ground plane, x pointing forward and y pointing
left, and z pointing upward out of the ground plane. Let w = {wx, wy, wz}
be a point in the world given R, and i = {ix, iy} be a point on the camera
image (see Figure 5.5, left). Based on the camera equations [49], given i
and the altitude wz, we compute wx and wy as follows:

wx = camx + av
camz − wz

iy − cv

wy =
(ix − cu)(wx − camx)

au

(5.7)

And, conversely, given w we compute i as follows:

ix = cu + au
wy

(wx − camx)

iy = cv + av
(camz − wz)
(wx − camx)

(5.8)

With cu, cv, au, av, camx, camz as constants. Let S be the space of these
constants. We calibrate the constants by minimising the squared error eproj

between a training set of hundred couples of points {(wj, ij)} and their
projections ix, iy over S:

eproj = ∑
j

(
(ix(wj)− ij

x)2 + (iy(wj)− ij
y)2
)

(cu, cv, au, av, camx, camz) = argmin
S

eproj

(5.9)

We do so using a simple evolution strategy [8] using 32768 individu-
als over 1000 generations. This evolution strategy operates on the real-
valued space of the constants. We do not perform self-adaptation, and
after each generation, we keep the best 25 % individuals. For each of
these individuals, we make three mutated copies to replace the discarded
75 % individuals. During evolution, we perform simulated annealing
by varying the mutation factor from 200 % to 0 %. The initial value are
(cu = 192, cv = 256, au = 500, av = 500, camx = 5, camz = 14). For muta-
tions, the standard deviation of the normally-distributed added value is 2



70 h Semantic maps

wx

wz wz

wy

ix
iy

Figure 5.5 The vision on the marXbot. Left: the coordinate system used for
computing projections. Right, top: the world as seen by the camera. Right,
bottom: the result of the processing: in red, the valleys; in blue, the top lines of
the cubes (resources).

for cu, cv, au, av and 0.1 for camx, camz. Finding these constants allows us
to project back and forth a point between its world and screen coordinates,
as long as we know the height of the point in world coordinates.

The raw resolution of the camera chip is 2048×1536; the chip has a
Bayer filter. We implement the Bayer to rgb transformation by downscaling
the image of a factor 2, which produces a high-quality output compared
to the usual interpolation-based methods. Thus the maximum usable
resolution for our application is 1024×768. As our probabilistic maps have
a resolution of 2 cm, and the robot is slightly shaking when moving, we do
not need such a high resolution. Thus we only take an image of 128×384,
with the advantage of exploiting the hardware average filter of the camera
chip. This allows us to use a very short exposition time and still capture
noiseless images. We only process the lower half of the image, as there are
no objects of interest above the altitude of the camera. We could exploit
the full frame if we would tilt the camera, however this would complicate
Equations 5.7 and require a hardware re-design.

We process the image from its bottom to its top. The actual detection
is different for the valleys and for the resources (see Figure 5.5, right).
Let {r, g, b} be a pixel and i be its intensity defined as i = r + g + b.
This pixel might correspond to a valley if i < tintensity valley and |r− g| <
tcolor valley where tx are thresholding constants. Otherwise, the pixel might
correspond to the ground. Once we have classified a pixel as ground or
not, we back project it from the image to the world, assuming an altitude
of 0 cm. Then, we cast a line on the wall and the resource maps from the
camera position to the back-projected coordinate. If any of these lines
crosses a point with a probability to contain a wall or a resource larger
than 0.5, we discard the point. The rationale is that a point seen behind a



Segmentation maps h 71

wall or a resource is not a genuine piece of information about the presence
of a valley.

The detection of the resources works by comparing together pixels
of the same column to find the top line of the cubes. Our model is that
the top line of the cubes is the most intense part of the image, as it is
white and receives light from 75% of its sides. This model is inspired from
the ambient occlusion technique used in computer graphics [61]. Given
the pixel {r, g, b} of intensity i, if i > tintensity cube and b + tcolour cube > r
and i > iprev + tcube delta, this pixel might belong to the top line of a cube.
Note that iprev is the intensity of the last candidate pixel, and that tx are
thresholding constants. Assuming that our lighting model is correct, and
knowing that we process pixels from the bottom to the top of the image,
we are sure that the last pixel meeting the condition belongs to the top
line. Like in the case of valleys, we back project this pixel from the image
to the world, this time assuming an altitude of 6 cm. Then we cast again
a line on the wall map to ensure that this pixel really corresponds to a
visible resource.

Figure 5.5 shows the raw image and the processed image; we use a
resolution of 512×384 for these screenshots to provide a normal aspect
ratio.

5.3 Segmentation maps

Out of the three probabilistic maps, we create two segmentation maps,
as seen in Figure 5.2 (bottom). The first map is the area map. It is based
on the fusion of the wall and the valley maps:

p(area = 1) = (1− p(wall = 1)) (1− p(valley = 1)) (5.10)

We consider a point for segmentation if its probability to be an area,
p(area = 1), is above a certain threshold. We use the approximation from
5.5 to compute this probability. Then, we apply Algorithm 5.1 to create a
list of areas. This algorithm also computes the surface of each area and its
centre of mass.

The second map is the resource map. We use the same procedure as
for the area map. We take directly p(resource = 1) from the probabilistic
resource map as the input of Algorithm 5.1.
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{Phase 1: segment regions and note equivalent relations}
l ← 0
for y = 0 to height do

for x = 0 to width do
if values[x][y] > t then

ltop ← labels[x][y− 1]
lleft ← labels[x− 1][y]
if valid ltop then

if valid lleft then
equivalence← node(ltop,lleft)

end if
labels[x][y]← ltop

else
if valid lleft then

labels[x][y]← lleft
else

labels[x][y]← l , l ← l + 1
end if

end if
end if

end for
end for
{Phase 2: fuse equivalent relations}
l ← 0
for c = every clique in equivalence do

for n = every node in c do
lookup[n]← l

end for
l ← l + 1

end for
{Phase 3: store final labels }
for y = 0 to height do

for x = 0 to width do
labels[x][y]← lookup[labels[x][y]]

end for
end for

Algorithm 5.1 The map segmentation algorithm. A first phase scans the map
and assigns a label to a position if its value exceeds a threshold t. This phase
tries to assign the same label to adjacent regions; however when two existing
regions join, they have different labels. In this cases, the algorithm stores the two
labels into an equivalence graph. The second phase iterates over the cliques of
this equivalence graph and builds a lookup table to fuse equivalent labels. The
last phase applies the final labels on the map using the lookup table.
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5.4 Symbolic-geometric representation

Out of the two segmentation maps, we create a dual symbolic-geometric
representation of the environment. At the symbolic level, this representa-
tion is based on first-order logic, which is suitable to define a state space
for automated planning (see Chapter 6). We refer to real-world objects by
symbolic constants, such as a3 for an area or r7 for a resource. We type
these constants by unary relations, such as area(a3) or resource(r7). We
relate real-world objects together using n-ary relations over their symbolic
constants, such as isIn(r7, a3). At the geometric level, we create maps
from symbolic constants to geometric data, for instance we store the centre
and the surface of areas and resources.

For each area in the area segmentation map, we check whether its
surface is larger than a certain threshold, in our case 200 cm2, and if so
we assign a symbolic constant to the area. We build a table mapping
the symbolic constant to a tuple containing the label identifier, the centre
of mass and the surface of the corresponding area. Then, we search for
pairs of areas that have a small valley between them. To do so, we search
for the closest points between the two areas using Algorithm 5.2. This
algorithm is not trivial because the areas might not be convex. However, it
is fast for relatively convex areas, for which most points drawn following a
distribution N (centre,

√
surface/2) lie inside the area. If the areas would

be highly non-convex, this algorithm would need a huge number of
iterations to have a good chance of finding the closest points. In that
case, it would be better to employ a grid-based algorithm such as A*.
The output of the algorithm, the resulting two closest points, are the
extremities of a potential bridge. If the distance between these two points
is lower than a threshold, in our case 12 cm, we consider the areas to be
connectable. We create the logical relation isConnectable and store the
extreme points of the bridge in a table, indexed by the symbolic constants
of the two areas. After processing the areas, we lookup the area in which
the robot lies and add an isIn relation between the robot and its area.

Then we process the resources. For each resource in the area segment-
ation map, we check whether its surface is larger than a certain threshold,
in our case 32 cm2, and if so we assign a symbol to the resource. Then
we lookup the position of the resource into the area segmentation map
and the area table to find in which area this resource lies. If the resource
is indeed located within an area, we add an isIn relation between the
resource and the area. We build a table mapping the symbol constant to a
tuple containing the label identifier, the centre of mass and the surface of
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dmin ← ∞
for i = 1 to N do

draw p0 ∼ N (c0,
√

s0/2)
draw p1 ∼ N (c1,

√
s1/2)

p0 ← last point in a0 on the line (p0, p1)
p1 ← last point in a1 on the line (p1, p0)
d← ‖p1 − p0‖
if d < dmin then

dmin ← d
pclosest ← (p0, p1)

end if
end for
return pclosest

Algorithm 5.2 The algorithm to find the closest points between two areas, based
on a Monte Carlo method of N iterations. Two areas a0 and a1 are given in input,
with centres c0, c1 and surfaces of s0, s1.

the corresponding resource.

5.5 Implementation

The implementation of the perception process is distributed into several
programmes (see Figure 5.6). The obstacle avoidance and the odometry
are implemented using aseba and run on the different microcontrollers.
We also use aseba to stream data from the rotating distance scanner, the
ground sensors and the proximity sensors. A stand-alone programme
acquires images from the camera and implements the image segmentation.
It builds a bitmap of the lower part of the image to indicate whether a
pixel appears to be a valley. For the resources, this programme finds for
each pixel column the position of the line of the cube, if one exists. This
programme always runs on the robot, as it uses the video for Linux inter-
face. Each time the programme shoots an image, it sends an event to aseba

to ensure synchronisation with the data from the other sensors. A third
programme implements the perception process itself. This programme
connects to aseba and to the image segmentation programme through
tcp/ip. It can thus either run on the robot itself or on a remote computer.
In the latter case, this programme provides a gui. This gui displays the
probabilistic or the segmentation maps, and overlays the symbolic and
geometric information. In addition, it can log statistics on regular intervals
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Figure 5.6 The software implementation of the perception process. The high-
level perception software can run either on the robot itself or on a remote
computer. We set memory and computational requirements to allow this software
to run in real-time on the robot. To avoid implementing remote visualisation,
when using a gui we run this software on the remote computer showing the gui.

to enable analyses.
The exploration behaviour of the robot aims at providing an efficient

coverage at a low computational cost. To do so, the robot has an ordered
list of relative points. The exploration algorithm runs through this list,
and for each point checks whether it is explorable. If so, the algorithm sets
a speed command to steer the robot to this point. If no point of the list is
explorable, the robot simply goes straight. A point is explorable if it has
not been explored yet, that is, if the valley map contains a low certainty for
this point. Moreover, the point should not be on the other side of a wall or
of a resources, considering the current position of the robot. If the position
of the robot has not changed for 5 seconds, the robot enters an emergency
unblocking behaviour. It rotates in a random direction for a random
time, and then moves straight on for about 3 seconds. The exploration
algorithm is executed at about 1 Hz. At the low level, the microcontrollers
running aseba implement obstacle and hole avoidance autonomously.
This behaviour consists of two vector-field avoidance algorithms [10]. If
the robot perceives a hole or an obstacle, it avoids it, otherwise it performs
exploration. Holes have priority over obstacles, and as avoidance consists
in turning on the spot, the hole avoidance behaviour cannot bring the robot
into an obstacle. The exploration algorithm must only provide a good
exploration, as it delegates safety considerations to the microcontrollers.
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5.6 Results

To analyse the performance of our representation system, we have
conducted 5 experimental runs of 25 minutes each in the environment
shown in Figure 5.2. At the start of every run, we place the robot in the
centre of the small area (the one with two resources). The robot faces the
opposite area. We keep at least 10 cm between the robot and the walls and
the valleys, as the sensors self-calibrate at the beginning of a run.

To understand how the representation of the world evolves over time,
we analyse the entropy of the probabilistic maps and the number of
grounded objects over time. We take one measure every second. For the
probabilistic maps, we are interested in the quantity of information in
these maps. Following the definition of mutual information, we define
this quantity as the entropy of the map prior to observation minus the
entropy of the built map. Let us call mt the map at time t and m0 the prior
of the map. Remember that we represent a map m as a set of independent
grid cells m = {mi}. Thus the difference of I(m) for the map m at time t
is:

I(m, t) = H(m0)− H(mt)

= H({mi
0})− H({mi

t}) = |{mi}|H(0)−
(

∑
i

H(mi
t)

)
(5.11)

where H(0) is the prior entropy of the map corresponding to the value
with which the cells of newly created maps are filled. This difference is
positive, because the knowledge about the world grows with time while
the robot explores. For the grounded objects, we log the number of areas,
of resources and of bridges.

Figure 5.7 overlays the evolution of the representation over time for the
5 runs. The top plot shows the probabilistic maps. Be warned that this plot
shows how much information the robot think it holds about the world, but
does not say anything about the correctness of the information. In this plot,
we see that the slam map has the fastest growing quantity of information.
This is reasonable as the rotating distance scanner can see both close and
far, and scans around the robot. On the long run, the slam map holds
slightly more information than the resource map. One reason for this is
that the slam algorithm converges while the resource perception is always
subject to the imprecisions of the temporal synchronisation between the
positioning, the camera and the infrared sensors. Another reason is that
the slam algorithm sets a prior on wall depth, which allows the wall map
to cover a larger area than the resource map. We also see that the resource
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Figure 5.7 The evolution of the environment representation over time. These
plots overlay the curves from 5 runs. Top: the information contained in the
different probabilistic maps. Bottom: the number of grounded objects per type.
In reality, there are 5 resources and 2 areas close enough to build a bridge between
them.
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map holds more information than the valley map. One reason is probably
that thanks to the camera, the robot perceives a large patch of the ground
continuously. As the tracks cause the robot to shake when it is moving, the
sides of the valleys hold a low certainty. Moreover, the slam is not perfect.
In particular, it might slightly stretch its map compared to the reality.
Thus, when using its camera compared to its ground sensors, the robot
sees the valleys at slightly different positions. On the sides of the valleys,
these two sensors return contradictory information, which increases the
entropy of the valley map. The reason for this stretch might be a constant
bias due to the slipping of the tracks. It would be interesting to test this
hypothesis by adding a correction factor in the parameters of the slam

algorithm (see Table 4.1, p. 57), redo the optimisation and redo the runs
of Figure 5.7 with the new parameters. Unfortunately, time constraints
prevent us from conducting such an investigation.

In the bottom plot of Figure 5.7, we see that the number of areas
and bridges quickly reaches the correct value, in all runs. The number
of resources is also approximately correct, however it is less stable. In
average over all runs, between 20 and 25 minutes the robot was detecting
the right number of resources 72 % of the time (1008 correct detections for
1394 measures). The perception of the resources is imperfect because, as
seen in Figure 5.2, three resources are in the remote area and are thus far
from the robot. This long distance affects the perception in two ways. First,
when the robot moves, the tracks create a slight vertical shaking, which
in turn creates small displacements in the image’s pixels. This results in
large changes in the wx coordinate of the resource, because of the division
in Equation 5.7. Second, as the robot turns, the angular position of the
object with respect to the robot frame changes very fast. As temporally
the image and the odometry are not perfectly synchronised, this results in
errors to the wy coordinate of the resource. These problems also affect the
perception of the valleys, but as the valleys are larger than the resources,
this does not disturb the perceived topology of the world, even if this
increases the entropy of the valley map.

5.7 Discussion

While the robot moves around, it continuously receives information
from its different sensors. Thus the robot acquires different sensor data
from different positions in the world. All data originating from aseba

arrive with a first-in first-out (fifo) policy, which ensures their temporal
synchronisation. However, as we can see in Figure 5.6, because of the
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size of the images the acquisition programme does not transmit its data
through aseba. Thus to synchronise images with the other sensor data,
this programme sends an aseba message each time it has acquired an
image. The main perception programme stores the estimated position
of the robot when it receives this message, and then uses this position
when it processes the image. As we do not use a real-time Linux kernel,
this synchronisation schema does not provide any temporal guarantee.
This results in positioning errors for the camera data when the robot
rotates quickly. Currently, we alleviate this problem by limiting the robot’s
displacement and rotation speeds during exploration. To solve these
problems in further developments and to allow the robot to move at faster
speeds, we should timestamp both the aseba messages and the images
shot. The video for Linux interface allows the latter, while we could
modify Medulla to timestamp incoming messages. We could then use
these timestamps to fuse the sensor data together, considering the robot
position at the time of data acquisition.

The camera provides perception of valleys and resources beyond 30 cm
and the infrared sensors give close-up information, so we do not have
any sensor covering the range of 5 to 30 cm. This is sub-optimal, as given
the size of the arena, this forces the robot to explore its surroundings
in details. This operation demands a lot of time and does not take a
good advantage of the range-sensing capabilities of the camera. However,
time and production constraints prevent us from improving the sensor
placement. In the context of our study of how integration affects the
application, this negative example still contributes interesting elements. It
shows us that the sensors should provide the right piece of information
that the high-level control requires. This emphasises the importance of a
co-design of hardware and software, or, in the case of this example, the
negative effects of the lack of co-design.

The current system implements slam solely using the rotating distance
scanner and the odometry/gyroscope. However, we could use the other
sensors such as the camera or even the ground infrared sensors to contrib-
ute information to the slam algorithm. Yet, the number of combination
possibilities is enormous and a slam implementation fusing data from
various heterogeneous sensors is an open problem. We think that the
most promising direction is to perform symbolic topological slam [6].
This method consists in abstracting local observations into symbols and
relations between symbols, and then to perform slam at the symbolic
level. By using the symbolic level instead of the metrical one, the probabil-
istic space is much smaller. Moreover, this method allows to use various
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features and spatial relations between them. Recent works have explore
the use of vision [20] and range data [6], and some have shown how to
take the odometry readings into account [91]. Finally, symbolic topological
slam is close to what we currently think to be the implementation of path
integration and mapping in mamals [68].

Currently, we discard the existing symbols when we create the symbolic
representation. However, it would be better to keep them and update
them with the information from the new segmentation maps. To do so,
we could match the existing regions with the new ones according to the
distance between their centres and their respective surfaces. However, this
simple procedure would not always be well suited, for instance when two
areas get merged as the result of the exploration by the robot. We could
explicitly handle this case by directly comparing the old and the new label
information from the old and the new segmentation maps, and fuse the
symbolic data accordingly.

Good visualisation and monitoring tools are extremely important for
developing a system as complex as this one. In particular, the ability
to see the different maps and scans in real time is critical. Indeed, the
human eye is excellent at detecting small repeated errors. Moreover,
the monitoring tool must be flexible to allow to visually inspect the
intermediate steps of the different algorithms. Finally, it is important to
overlay the dual symbolic-geometric representation over the probabilistic
and the segmentation maps. This allows to easily validate the correctness
of this representation.

Aseba provides logging and replay tools, that allow to re-create the
stream of events the robot received during an experiment. This feature
proved extremely useful in implementing the first draft of the perception
subsystem. Indeed, on a fast computer it allows to re-run the experiment
at several time the speed of reality. This multiplies the efficiency of
finding bugs and implementing features. The camera programme does
not support replays, but by taking snapshots we managed to make it work
fairly easily. However, we are convinced that for complex application, a
logging and replay architecture is of paramount importance.

Our symbol grounding stack uses several magical constants, such as
the minimal size of an area or the maximal width of a valley allowing the
robot to build a bridge. We chose these constants given our knowledge
of the robot hardware and some preliminary experiments. It would be
interesting to allow the robot to learn some of them. However, this is
difficult as this requires low-level safety procedures, for instance using the
accelerometre to back off when the robot begins to fall. Another solution
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would be to learn these constants out of a simulation, but again setting up
the simulation is a major work in itself. For these reasons, we think that
hand-crafted constants are acceptables.

On the technical side, our probabilistic maps have values coded as
16-bit signed integers. Yet we use increments of about the order of 100
or larger, so 8-bit signed char would have sufficed. Our good grounding
results also show that computing the log odds ratio of the product of
probabilities using the approximation from 5.5, albeit crude, is sufficient.

5.8 Conclusion

Our representation system fuses data from different sensors and is
organised in three layers of progressive abstraction. This system is able to
perceive a topologically rich environment and to build a dual symbolic-
geometric representation. This representation is a solid basis upon which
to develop an autonomous construction application. As we will see
in Chapter 7, this representation enables the robot to construct three-
dimensional structures, which validates Hypothesis 5.1 (p. 64).

However, our experiments have shown the limits of the rotating dis-
tance scanner as the sole source of extrinsic information for slam. The
limited range and precision of this scanner bounds the quality of the data
fusion from other sensors, in particular from the camera. If we generalise
this observation, we can state that if a first sensor has an error ε, and if
the value of a second sensor depends on this error following a function
f (ε), then it is useless for the error of the second sensor to be lower than
f (ε). This leads to a Pareto-optimal [31] sensor allocation policy, where
no sensor can increase its error without decreasing the performance of
the whole system. Finding this optimal is difficult, as the errors com-
bine in a non-linear way in general. There are several solutions to find
this optimal, for instance using a simulator or by repetitive combinations
of physical building blocks. In all cases some form of global optimisa-
tion is required. The important point is that if we take this search as a
guiding principle for the design of perception systems, we can develop
systems that are optimal for a given desired performance. This corrobor-
ates Hypothesis 1.1 (p. 2), and as the application of this principle allows
better perceptions for a given money/sensing/computing budget, this
also strengthens Hypothesis 1.2 (p. 2).
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Chapter 6

Planner 9, a distributed HTN
planner

Automated planning is closely linked to intelligence in robotics. The
first automated planner was developed to drive Shakey, an early autonom-
ous mobile robot [78]. Despite this common origin and the frequent use
of planning in robotics, the two fields have largely diverged since. Most of
the research on planning is currently evaluated on benchmark problems
that are far from the robotic reality [62]. We have tested on a robotic
scenario several planners from the literature, and found that none of them
was satisfactory. Some just crashed, other failed to produce a plan or ran
forever. The few which produced plans generated sub-optimal ones.

We thus have developed Planner 9, our own hierarchical task network
(htn) planner [40, ch. 11] based on our robotic needs. Planner 9 is a
distributed htn planner that runs concurrently on multiple mobile robots
or on multi-core processors. We choose htn planning because it is the
mostly used planning technique for real-world applications [40, p. 229].
Our robots do not have a large processing power, being built around
a smartphone-level computer which provides one tenth of the power
of a laptop computer (see Chapter 2). However, these robots have a
good Wi-Fi connectivity to their peers. Planner 9 takes advantage of this
large bandwidth to processing-power ratio to distribute the planning over
different robots. Based on our experience with existing planners, we have
formulated the following hypothesis:

Hypothesis 6.1. The requirements for a distributed robotic implementation of
an htn planner affect the execution properties of its algorithm. In particular, the
scenario space for which the algorithm finds a solution and the solution plans are
completely different.
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Figure 6.1 The htn planning part within the bloc scheme of the autonomous
construction application.

This chapter presents Planner 9 and gives experimental results that
validate this hypothesis. To do so, we compare Planner 9 to JSHOP2, a Free
and an often referenced htn planner. We show that Planner 9 scales well
with the number of robots and the complexity of the environment. This
chapter also discusses the lessons learnt, the future works and situates
Planner 9 in the broader context of this thesis. As Figure 6.1 shows, in the
context of the autonomous construction application, Planner 9 provides
the reasoning engine.

6.1 Related work

A vast literature exists on planning with multiple agents. However, the
choice of a particular algorithm is a trade-off between several factors such
as planning expressiveness, distributivity, bandwidth consumption and
speed of execution [30]. In this section we focus on the approaches that
are implementable on real robots with limited resources.

To distribute planning among different agents, one can run an inde-
pendent planner on each agent. Works in simulated robotic football have
used htn planning that way [80]. However, in general this solution cannot
improve the time nor reduce the memory required to solve a specific prob-
lem. In the direction of distributing the planning process, Dix et al. [25]
have integrated the SHOP htn planner within a distributed agent frame-
work. The resulting A-SHOP planner uses the provided infrastructure
to query the state of the world, evaluate preconditions, apply effects and
estimate potential states from remote agents. However, in this work the
planning itself is still centralised. Theoretical works in multi-agent systems
have shown that it is possible to integrate the distributed aspect in the
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Figure 6.2 Methods for going to a room by recursively putting out fires on the
way. The ellipses represent the three alternatives, while the rectangles represent
tasks.

planning algorithm [22, 27]. For instance Dias et al. [23] have proposed a
market-based approach where and/or trees of tasks are exchanged between
agents. These authors acknowledge the interest of more expressive plan-
ning but address the issues of distributivity and scalability first (“Further
research will also investigate further generalisation of the tree structures
and task constraints.” [121, p. 25]). Thus their approach is less centralised
but also less expressive than common htn planning. Recent works in htn

have proposed stratified planning where remote agents plan sub-tasks
and report them to a master. In Pellier et al. [82], finding the final plan
is the result of the exchange of proposals and counter proposals between
agents. In Hayashi et al. [51], the child agents are also responsible for
execution, and interleave planning, execution and re-planning. These
methods require a large number of synchronisation messages. On the
contrary, Planner 9 considers the different robots as a computer cluster and
distributes the planning of any task to any robot and thus takes advantage
of all the available computational power using simple synchronisation.

6.2 Model and implementation

Planner 9 is a htn planner. A htn planner decomposes a goal task
into sub-tasks until it finds a sequence of actions that the robots can
perform. A task has a name and zero or more parameters. It can be
implemented either by an action or by one or more methods. An action
holds a precondition which must be true to allow its application. It also
holds a list of effects that alter the state of the world; so the planner records
these alterations when it applies the action. An action might have local
variables that appear in its precondition and its list of effects.
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Contrary to an action, a method does not affect the state of the world,
but rather decomposes itself into other tasks. A method holds a precondi-
tion, a graph of sub-tasks, and possibly local variables. If several methods
implement a task, we call these alternatives. The planner knows the avail-
able actions, methods and their possible alternative decompositions, like
in Figure 6.2. When given the goal task and the initial state of the world,
the htn planner seeks an admissible sequence of actions by recursively
decomposing tasks into sub-tasks until all its tasks are actions.

Planner 9 plans partially-ordered graphs of tasks using forward decom-
position, as in [40, p. 243]. It keeps track of each possible decomposition
in a different search node. Planner 9 starts planning with a single node
containing the goal task and the initial state of the world. When visiting a
node, Planner 9 iterates through all the tasks that have no predecessor. If
the task is an action, it applies this action to the current state of the world
and stores the action as part of the plan. Otherwise, Planner 9 instantiates
the different possible decompositions of the task. This process goes on
until there are no more nodes left or until Planner 9 has found a node with
no more tasks to decompose.

The state of the world consists of a set of n-ary relations over a set of
values. The application of an action affects these relations. The values
represent things from the real world, like rooms or robots in Figure 6.2. In
the latter, the move action will update the isIn relation between the robots
and the rooms. The planner creates variables when decomposing tasks.
For example in Figure 6.2, the goto task can be decomposed using the fire
on the way alternative. This decomposition introduces new variables: the
extinguisher to use and the room where the extinguisher is located. The
decomposition has preconditions over these variables that the state of the
world must satisfy. For instance, the extinguisher must be located in an
accessible room. When Planner 9 decomposes a task, it performs lifting:
it accumulates its preconditions for delayed check. Planner 9 assigns a
value to a variable only when an action changes a relation this variable
appears in. For every variable assignations allowed by the accumulated
preconditions, Planner 9 updates the state and creates a new search node.
To do so in an efficient way, it assigns values using dpll [21]. The use
of lifting is one of the improvements of Planner 9 over the basic htn

algorithm. It results in fewer search nodes and more processing per node,
which is desirable for parallelisation.

Planner 9 chooses the node to visit by selecting the least expensive
one using A* [48]. In its basic configuration, as cost Planner 9 adds the
total cost of the decomposition so far (path cost in A*) and, in general, the
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Figure 6.3 Planner 9 balances the load of the different robots by exchanging
search nodes over the network.

number of remaining tasks to be decomposed (heuristic cost in A*), see
Proof of Theorem 6.1. One advantage of A* with respect to a depth-first
search is to allow free recursions in the definition of the planning domain.
This is useful in robotics because real-world problems are often expressed
in a recursive way, like in Figure 6.2. Moreover, A* finds optimal plans:

Theorem 6.1. In its basic configuration, Planner 9 always finds the shortest
sequence of actions to implement a task.

Proof. A* is optimal if the heuristic function is admissible, that is, if this
function never overestimates the distance to the goal. Let us consider that
the cost of an action is ≥ 1. With no loss of generality, with the exception
of forbidding free actions, we can rescale the cost of all actions to meet this
condition. Thus, the total cost of the decomposition so far, the path cost,
is ≥ n for a current partial plan containing n actions. If the htn domain is
such that every task will be decomposed into one or more actions, then the
number of remaining tasks to be decomposed is an admissible heuristic.
If the htn domain contains tasks that can be decomposed into no action,
then the only admissible heuristic is a function always returning 0. In that
case, A* reduces to Dijkstra’s algorithm [24], which is optimal as well.

As each node is independent, Planner 9 can distribute the A* search
over the network using a master/slave architecture (see Figure 6.3). The
slaves run the algorithm described in the previous paragraphs and report
periodically the cost of their cheapest nodes to the master. When the
cost differences between slaves are significant, the master requests nodes
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from the slave with the lowest cost. It then transfers them to the slave
with the highest cost. The same robot can be both master and slave, as
the master does not require a lot of computational power. As our results
show, this load-balancing algorithm is simple yet efficient. Slave robots can
appear on and disappear from the network dynamically, for instance when
they boot or because their batteries are discharged. The master discovers
available slaves dynamically using the Zeroconf protocol 1, which is based
on broadcast announcing. Thanks to it, Planner 9 does not require a central
registry and can use any robot available on the local network.

Planner 9 is implemented in C++, is open source 2, and runs on em-
bedded Linux. It only depends on the C++ standard library, the boost
library 3, and Qt Embedded 4, which are all open source. Planner 9 is thus
easy to embed in any robot running a modern Linux board.

6.3 Materials and methods

To measure the performances of Planner 9, we have developed a small
search and rescue scenario (Figure 6.4). In this fictional scenario, groups
of robots are dropped into a damaged building and must bring a medical
kit to humans trapped in a room. Multiple fires block the ways; robots
can use fire extinguishers to put them out, but an extinguisher can put
out only one fire. This is a typical situation where reactive controllers
would fail because there are not enough extinguishers directly available to
put out all fires. The robots must use the right extinguishers on the right
fire in the right order and thus need a plan (Figure 6.5). This scenario
is representative of complex tasks that will require a planner. Here we
suppose that the robots know the locations of fires, extinguishers, objects
and people. To discover them in a real-world situation, we can imagine to
deploy exploration robots that would map the environment.

We perform two types of experiments with different aims:
– First, we measure the scalability of Planner 9 on real marXbot robots

by inputing our fictional scenario to the planner. The robots, beside
powering up their main computer, rest idle during this experiment.

1. http://www.zeroconf.org/

2. One can access the source tree using git; to retrieve it, type: git clone

git://gitorious.org/planner9/planner9.git. We performed the simulation experi-
ments using revision a501cfd704e4c759a0d83ea27dfcc85be53929ef and the real-robot
ones using revision 34f4ea4e8d1b17efd610b8eab636e4014f7a8d45.

3. http://www.boost.org

4. http://www.qtsoftware.com/products/

http://www.zeroconf.org/
http://www.boost.org
http://www.qtsoftware.com/products/
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Figure 6.4 Search and rescue scenario (left) with abstract representation (right).
The robots are dropped into a damaged building. They must bring a medical kit
to the humans trapped in the lower left room. To do so, they must extinguish the
fires in the right order; otherwise they would fail the rescue operation as there
are not enough extinguishers readily available to put out all fires.

take(r0, e0) a0, a1, a2, a3, a4, a5 : rooms

extinguish(a1, a0, r0, e0)

take(r1, e1) r0, r1 : groups of robots initially

extinguish(a2, a1, r1, e1) in a0 and a1 respectively

move(a2, r0)

take(r0, e2a) e0, e1, e2a, e2b : extinguishers

move(a1, r0) initially in a0, a1, a2, and a2

extinguish(a4, a1, r0, e2a) respectively

move(a2, r0)

take(r0, e2b) o0 : medical kit, initially in a0

move(a4, r0)

extinguish(a5, a4, r0, e2b)

move(a0, r1)

take(r1, o0)

move(a5, r1)

drop(r1, o0)

Figure 6.5 Solution plan for the scenario presented in Figure 6.4. take let a
group of robots pick up an object. extinguish puts out a fire between two rooms.
move displaces a robot group to a room. drop puts down the object the robots
hold.
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Figure 6.6 Scenarios with additional elements useless to the robots. These
elements add more branches to the search tree without affecting the solution.

They use their Wi-Fi adapter to communicate. A desktop computer
acts as the master. We vary the number of robots from 1 to 7. We
perform 100 runs for each point, and show the average and the
standard deviation.

– Second, we compare Planner 9 with JSHOP2 5 [76], a free and an
often referenced htn planner implemented in Java. As our robots are
built around an arm processor, for which there is no Java runtime
environment with an efficient just-in-time compiler, we do this com-
parison in simulation. We detail the simulation methodology later in
this section. To explore the scalability of Planner 9 and JSHOP2, we
vary the difficulty of the planning by adding elements to the world
that are useless to the robots, as shown in Figure 6.6. We first add
two empty rooms, then we add extinguishers in these rooms and a
medical kit in a3. These elements add more branches to the search
tree without affecting the solution. For each case, we perform 100
runs using 1 and 7 slaves. As JSHOP2 is a depth-first search planner,
we add bookkeeping actions that prevent infinite recursions. We do
not count these actions when comparing plans’ sizes. We subtract
the startup time of JSHOP2 (time to decompose an empty task) to
put it on an equal basis with Planner 9.

To simulate the robots, we compile, run and benchmark Planner 9 on a
real robot and on a desktop computer. We then compute the performance
ratio, in term of the number of nodes processed per second, between
these two. In the simulation, we use cpulimit 6 to only allow as much
processing power as available on the robot, which corresponds to 5 % of
an Intel Core2 at 2.83 GHz. Thanks to ulimit 7, we limit the memory to
100 MB, which is the amount available on the robot. Finally, we divide the

5. http://sourceforge.net/projects/shop

6. http://cpulimit.sourceforge.net/

7. http://www.linuxhowtos.org/TipsandTricks/ulimit.htm

http://sourceforge.net/projects/shop
http://cpulimit.sourceforge.net/
http://www.linuxhowtos.org/Tips and Tricks/ulimit.htm
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available simulated Wi-Fi bandwidth (19 Mbps using IEEE 802.11g) by the
number of slaves and limit the network bandwidth using trickle 8. This
way, our measurements are representative of the expected performances
on the robots. To prevent the use of fast inter-process communications on
the simulation computer, we run multiple slave processes of the planning
algorithm on this computer while another computer runs the master
control programme. That way, we ensure that data will go through
the network. This approach works as long as all slaves plan for a long
duration. When we increase the number of slaves, the time to find a
solution decreases which is a problem. Indeed, cpulimit and trickle impose
limitations by pausing and restarting execution and data transmission.
They interfere with our measurements when slaves find solutions in
the same order of magnitude of time as these tools operate. We have
observed such interferences starting from 8 slaves. Therefore, we limit our
measurements to 7 slaves.

6.4 Results

Figure 6.7 shows the measures of the scalability of Planner 9 on the
real robots. The first plot shows that the performances scale well with the
number of slaves. The speedup, which is the planning time using n slaves
divided by the time using 1 slave, is excellent up to 4 slaves. Then it drops
a bit but is still very good, as the time to find a plan using 7 robots is 6
times smaller than using only 1 robot. We see that the average number of
nodes visited is stable, even if the standard deviation grows. This means
that our node distribution algorithm, while being simple, does a good job.
While performing these experiments, we noticed that the performances
of the wireless network was slow and not very constant. We think that
this explains the relatively bad performances with 6 slaves. Even if we
conducted 100 runs, these were done in the same period, and thus were
not independent, when conditioned over the quality of the network. We
think that the major reasons for these inconsistencies are the bad quality of
the Linux driver for the Wi-Fi adapter and the transient heavy use of the
Wi-Fi by the other users. When operating with a well-supported hardware
and in a less bloated Wi-Fi environment, we expect the performances to
be slightly better.

Figure 6.8 shows the measures of the scalability of Planner 9 in the
simulation. We conducted these runs to compare their results with JSHOP2.

8. http://monkey.org/~marius/pages/?page=trickle

http://monkey.org/~marius/pages/?page=trickle
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Figure 6.7 The scalability of Planner 9 with respect to the number of slaves, on
real robots. The scenario is shown in Figure 6.4. The error bars show the standard
deviation over 100 runs. In the second plot, npsps represents the number of nodes
visited per second per slave, renormalised.
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The first plot shows that the performances scale nicely with the number of
slaves and that the speedup is even super linear. We analyse this using
the second plot, which shows the number of nodes visited per second
per slave, renormalised. When we increase the number of slaves, each
can process more nodes per second, that is, the processor appears to be
faster. The cause of the super linearity is a combination of the structure of
the problem [89] and a memory cache effect. Indeed, by distributing the
planning, each slave holds fewer search nodes in memory. Saving memory
reduces the strain on the processor’s cache and on the memory allocator,
which increases the performance. This super-linearity property means that
Planner 9 can exploit optimally multi-core processors. When the number
of slaves grows further, the performance deteriorates. We attribute this
effect to the load balancing, which increases the average time to find a
solution because it moves low-cost nodes around.

Figure 6.9 shows the measures of the ability of Planner 9 and JSHOP2 to
cope with environments of increasing difficulty. On the basic environment,
Planner 9 with 1 slave is faster than JSHOP2; using 7 slaves, it is one order
of magnitude faster. Moreover, Planner 9 uses both groups of robots while
JSHOP2 extinguishes all fires with r0, which adds one more move action to
the plan. Adding two empty rooms does not disturb Planner 9 much, but
JSHOP2 cannot cope: it exhausts its memory before finding any solution,
even if we give it 2 GB instead of the 100 MB available on the robot. When
we add useless objects in the empty rooms, the planning time of Planner 9
increases but does not explode. In this environment, JSHOP2 either finds
a solution quickly or exhausts its memory, depending on the order of
appearance of the new elements in its initial state of the world. If we
declare the new elements (rooms and objects) before the basic environment,
JSHOP2 finds a solution. If we declare them afterwards, it fails. Moreover,
when it finds a solution it is a long plan with a lot of useless actions, such
as using one extinguisher to access a room to get another one. These results
show that Planner 9 scales well with the complexity of the environment,
compared to JSHOP2. We attribute these excellent performances to the
lifting which keeps different value assignments 9 in a single node by
abstracting them using a variable. Planner 9 assigns a value later, when it
has collected more constraints on this variable. On the contrary, JSHOP2
assigns values early and performs a depth-first search. If by chance the
first search branches lead to the solution, JSHOP2 finds it quickly. But
otherwise, it must explore an exponentially large number of branches

9. a value assignment corresponds to choosing a constant from the world, such as r0

or a1
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before finding a solution.

6.5 Lessons learnt and future works

As we mentioned in the introduction to this chapter, prior to devel-
oping Planner 9 we have tested several planners from the literature and
found that none of them was working well on a robotic scenario. The
underlying reason is that these planners have been developed and tested
on a small set of benchmarks, and though the theoretical foundations of
the planners are sound, their implementations are highly biased towards
these benchmarks. This teaches us that, at the practical level, expecting
plug and play with cognitive bricks is not realistic. At the theoretical level,
we notice that planning algorithms are most of the time described in the
form of non-deterministic algorithms [35]. While this formalism allows a
compact description of complex algorithms, it omits a lot of information
about how the choices are taken, in which order, etc. Thus the performance
profile on a certain domain will vary a lot given different implementations,
as shown by the comparison between JSHOP2 and Planner 9. In the same
direction, our comparison results between simulation and real robots show
that the physical nature of the underlying IT infrastructure does affect the
performance profile of the planning algorithm.

Planner 9 is currently a basic htn planner that does not provide any
extension such as probabilistic planning or conditional actions. The ra-
tionale is that planning real-world scenarios is computationally intensive
and that we want to tackle tasks of some complexity, so we avoid any
extension that inflates the search space until such extension is required
for the application. Moreover, we can make good use of the availability of
multiple robots to reduce the uncertainty of the world perception through
concurrent sensing from different locations. Merging these would produce
a robust estimation of the state of the world for planning at the symbolic
level. With enough robots, we expect this estimation to be good enough
not too require probabilities at the level of the planning space. Never-
theless, we can use probabilities in conjunction with learning to guide
the search in the plans’ space, as demonstrated in Chapter 7. Finally, the
parallelisation capabilities of Planner 9 would work with extensions as
well so we can implement them should the need arise.
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6.6 Conclusion

In this chapter, we have presented Planner 9, a htn planner that dynam-
ically distributes planning to multiple processing units. This mechanism
works with Wi-Fi-enabled mobile robots by considering them as a com-
puter cluster but also exploits at best multi-core workstation processors.
To enable this distribution, we have enhanced the htn algorithm with an
A* search and with the lifting of the tasks’ preconditions. Previous works
have explored how to distribute the decomposition of a particular sub-
task, but Planner 9 distributes the processing of any task and thus benefits
from all available computational power. Albeit simple, this mechanism
is efficient as our results show. When compared to JSHOP2, a milestone
in htn research, Planner 9 always finds optimal plans; while JSHOP2
only sometimes finds plans, and they are sub-optimal. This validates
Hypothesis 6.1 (p. 83).

Thanks to its excellent performances, Planner 9 brings planning to
miniature mobile robots, which improves the state of the art of intelligent
applications on these platforms, as shown in Chapter 7. As a contribu-
tion to the fundamental hypothesis of this thesis, Hypothesis 1.1 (p. 2),
Planner 9 shows that the constraints stemming from integration, in this
case the limited available computational power and the requirement to
distribute the processing, modify the planning algorithm itself, and in this
case lead to an improvement over the state of the art.
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Chapter 7

Autonomous construction

In this chapter, we present an application that combines the results of
the previous chapters (Figure 7.1). In this application, a marXbot explores
its environment and builds structures in it, following orders from a human.
We already presented the environment at the beginning of Chapter 5. To
build a structure, a tower in this experiment, the robot must pile up 3
resources. However, 3 resources might not be readily available, and the
robot might have to harvest them from remote areas. Yet to access a remote
area, the robot must fill the valleys to build bridges between its current
location and the area. Building a bridge requires 2 resources, thus the
robot might have to consume its existing resources to build the bridge. To
do so the robot must devise a careful course of action not to squander
its resources by accessing useless areas. At the start of the experiment,
the robot does not know the environment and ignores the number and
the location of the resources. This application is challenging for robotics

HTN planning

order from human

execution

low-level control

perception

actuatorssensors

Figure 7.1 The bloc scheme of the autonomous construction application. We
combine the results of the previous chapters and add an execution engine.
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because it mixes complex low-level actions, such as precisely piling up
cubes, with a high-level cognitive behaviour, reasoning on a course of
action to avoid situations that prevent the completion of the structure. Yet
we will show that by doing the integration properly, we can meet these
challenges:

Hypothesis 7.1. Autonomous construction of three-dimensional structures in
an unknown environment with scarce resources is feasible with a miniature mobile
robot with imperfect sensors and actuators. Integration plays a key role and is
critical for success.

7.1 Related work

Construction has attracted the interest of roboticists since long, both
because it is challenging for robots and because it is dangerous for hu-
mans. As construction implies close and complex interactions with the
environment, in this survey we will only consider works performed with
real robots. Indeed, as stated by [5], “. . . the complexity of interactions
available for exploitation in the real world cannot be matched by any
practical simulation environment”. While the performances and the accur-
acy of physics-based simulators have progressed much since this paper
was written (1994), the modelling of the interactions that occur in a con-
struction process requires a lot of work, and thus conducting experiments
directly in reality is more efficient.

In the early 1990s, researchers in the building industry proposed fully
automated workflows to build complete buildings [98]. More pragmatic-
ally, roboticists at that time achieved results with real robots employing
simple building blocks on flat surfaces. These works are based on the
stigmergic property of construction; that is, a robot can gain information by
looking at what is already present in the environment [5]. This property
is the base of collective construction in social insects, like termites and
ants [36]. By using stigmergy, researchers managed to build heaps [5],
clear areas [81] and build rough walls [69,103]. The construction processes
presented in these works require specially crafted building blocks, and
only result in simple and approximate structures. Recent works improved
the precision and the quality of the constructions by embedding informa-
tion into the building blocks themselves, by colouring them [114] or even
by integrating rfid tags inside them [116,117]. While this indeed improves
the extent of what the robots can build, this requires even more complex
and handcrafted building blocks. Moreover, all the works surveyed so
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far employ multiple simple robots to build simple structures with limited
coordination. While this is interesting, in particular in the light of un-
derstanding the behaviour of social insects, these works do not allow the
construction of complex structures at precise locations. We can retain from
this line of research that because it stores information in the world itself,
stigmergy provides scalable coordination between the robots and reduces
the need for complex positionning. We will exploit this property by doing
visual servoing when grasping resources and building structures.

Recently, a second line of research has taken a more engineering
perspective and aims at more complex structures. An early work in
this direction [37] proposes a robot that aids a human operator to build
structures, but is not autonomous in itself. A more recent work from
JPL [105] demonstrates two robots assembling beams to build structures.
Each robot has a stereoscopic camera, a force sensor to feel the actions
and to coordinate with the other robot, and a Wi-Fi connection. Robots
detect objects using explicit visual markers, and they employ a multi-layer
control strategy. These layers range from low-level reactive behaviours
to high-level task planning [55]. NASA hopes to deploy such complex
construction systems in outer space [104]. The capabilities of these robots—
in particular their ability to build complex structures and to coordinate
each other—are impressive. Yet they still rely on precisely engineered
beams and well-visible markers, and no reasoning algorithm has been
demonstrated so far. Moreover, resources were always readily available.

Our work tackles the problem of autonomous construction of vertical
structures with a single robot, in an unknown environment where re-
sources are scarce. We solve the construction problem in this context by
integrating into a single system both low-level reactive behaviours and
high-level cognition, in this case htn planning. By doing so, we demon-
strate a system that is beyond the state of the art in robotic autonomous
construction.

7.2 Experimental setup

The experimental setup is presented in Figure 5.2 (p. 65), at the begin-
ning of Chapter 5. The environment consists of flat areas separated by
walls and valleys, and resources that the robot can drop into valleys to
build bridges or can pile up to build towers.

The resources are cubes of expanded polystyrene of 6 cm. The cubes
have tiny ferromagnetic plates at the bottom of their sides to allow the
marXbot to grasp them with its magnetic manipulator. Moreover, the
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Figure 7.2 The system architecture for the autonomous construction application.

cubes have small magnets at their bottoms and little ferromagnetic plates
on their tops. This allows the cubes to align with one other when stacked.
The marXbot can employ the cubes either to fill valleys to create passages
towards remote areas, or it can pile them up to build structures.

7.3 Overview of the control programme

We use the marXbot in the configuration presented in Figure 2.4 (p. 12).
This configuration includes the base of the robot, the magnetic manipulator,
the rotating distance scanner and the main embedded computer with the
front camera. Figure 7.2 shows the system architecture and the block
scheme of the control programme.

In this autonomous construction scenario, the robot performs two main
activities: exploration and plan execution. When the experiment starts,
the robot begins exploring. Exploration allows the robot to build a dual
symbolic-geometric representation of the environment, as described in
Chapter 5. The exploration behaviour is the same as the one described
in Section 5.5 (p. 74). The resource and the hole maps are only updated
when the robot is exploring. When a human gives an order, the robot
uses its internal representation to build the initial state of the planning
problem. The robot then performs the planning using Planner 9, which is
described in Chapter 6. If the planning succeeds, the robot stops exploring
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action description

move(d, r) Move to a given position in the destination area d.
take(res) Move to the front of the resource res and take it.
fill1(d, s) Drop a first resource to start building a bridge between

the areas s and d.
fill2(d, s) Drop a second resource to finish building the bridge

between the areas s and d.
build1(d) Put a first resource to begin building a tower in area d at a

given position.
build2(d) Put a second resource on top of the first to build the tower

in area d at a given position.
build3(d) Put a third resource on top of the second to build the tower

in area d at a given position.

Table 7.1 htn actions that the robot can perform in the real world.

and executes the plan; otherwise it continues exploring. After executing a
plan, the robot explores again.

The execution of the plan consists in executing each action sequen-
tially. An action in the htn planning sense corresponds to a low-level
behaviour implemented in aseba. Table 7.1 lists the available actions
in the autonomous construction domain, while Section 7.4 details the
corresponding low-level behaviours. Prior to executing an action, the
robot moves to a specific position in the relevant area. To do so, it uses a
two-layer pathfinder algorithm, as explained in Section 7.5.

7.4 Low-level behaviours

We implement the low-level behaviours corresponding to htn actions
using aseba (see Chapter 3). The high-level control starts the execution of
a low-level behaviour using a specific event, and the low-level behaviour
informs the high-level control of its execution result (success or failure)
through an event as well.

7.4.1 move

This behaviour consists in moving to a given position in a destination
area. The area is available in the symbolic part of the representation of the
world, and the position in the geometric part.
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Figure 7.3 The movement sequence to grasp a cube with precise alignment.

7.4.2 take

This behaviour consists in accurately grasping a cube; Figure 7.3 shows
its movement sequence. The precision is critical because a misaligned
cube would add errors to all subsequent operations. Based on preliminary
experiments, we have chosen to grasp cubes in two steps to ensure their
precise alignment on the manipulator. After an initial orientation using
the camera, the robot goes forward and grasps the cube. It then rotates
leftward and rightward to ensure a firm grip. At that point the cube is
surely grasped, but certainly misaligned. Thus the robot ungrasps the cube
and moves back. It then moves forward again while using the infrared
sensors of the magnetic manipulator to align the cube at the centre of the
manipulator. The robot performs this by rotating if the difference between
the median right and left infrared sensors is above a threshold. Otherwise
the robot goes straight on. The speed of rotation is proportional to the
difference, which results in a P controller with a hysteresis. When the
robot is close enough to the cube, it grasps it again, and this time the
cube is well aligned. We have experimentally found this control policy to
produce a precise grasping. To allow scanning for valleys while holding a
cube, the magnetic switchable device lies on one side of the manipulator
while the infrared sensors lie on another side. Thus between scanning
and grasping, the robot must rotate the manipulator. This explains the
complexity of the grasping sequence shown in Figure 7.3.
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7.4.3 fill

This behaviour consists in dropping a cube into a valley to build a
bridge to the opposite area. To build a safe passage for the robot, a bridge
requires two cubes side by side. The htn planning domain ensures that
this behaviour is only called when the robot is holding a cube. There are
two versions of this behaviour, fill1 and fill2; they differ only by the
initial placement of the robot. For fill1, the robot is initially placed at the
right of the centre of the bridge, for fill2 at the left.

The robot goes towards the valley and scans for it using the infrared
proximity sensors of the magnetic manipulator. The robot computes the
difference between the median right and left infrared sensors, and rotates
accordingly. We limit the rotation speed. This control law improves the
orthogonality between the robot and the local side of the valley. When
the two infrared sensors see the valley, the robot goes back for a short
distance, then stops and drops the cube. The robot must go back because
the infrared proximity sensors are placed far from the magnetic switchable
device, so the robot must move to drop the cube close to the border of the
valley.

7.4.4 build

This behaviour consists in building a tower of up to three cubes. The
htn planning domain ensures that this behaviour is only called when
the robot is holding a cube. There are three versions of this behaviour,
build1, build2 and build3; respectively to place the base cube for the
tower, to place the middle cube and to place the top cube. Putting the
base cube is easy, the robot simple goes forward for a short distance, then
stops and disengages its magnetic switchable device. It then slightly lifts
its manipulator to ensure that the cube is well detached, and goes back
for a short distance. Putting the middle and the top cubes first requires
an orientation using the camera. Then the robot raises its manipulator,
goes forward and scans for the previous cube using the infrared proximity
sensors of its magnetic manipulator. If the sum of the intensities of the
middle sensors is above a threshold, the robot stops and disengages its
magnetic switchable device. As the cubes have small magnets at their
bottoms and little ferromagnetic plates on their tops, the new cube self-
aligns and self-assembles with the existing cube. Finally, the robot goes
back for a short distance. The difference between adding the middle and
the top cube lies in the height to which the robot raises its manipulator.
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7.5 Pathfinder

The pathfinder is composed of two layers. The high-level layer allows
the robot to go from an area to another. To find this path, the robot looks
up the source and the destination areas into the bridge table. Because it
suffices for our application, we have currently only implemented direct
lookup, when there exists a bridge between the two areas. Extending this
with a search in the bridge graph to find the path for two areas that are
not directly connected is easy. The result of the high-level pathfinding
layer is a sequence of points. Note that the htn planning domain enforces
that the robot builds a bridge prior to crossing a valley.

The low-level layer finds a path between two of these points. This may
correspond to a path within an area or to the crossing of a bridge. This
path avoids walls and unexplored areas. It also avoids resources if possible.
This pathfinder is based on the work of Philippsen et al. [84]. The algorithm
performs a wavefront propagation with variable propagation speed and
a smooth front. We use the variable propagation speed to implement
soft constraints, such as allowing the robot to avoid the resources if
there is enough room. At the implementation level, we first take the
maximum likelihood of the probabilistic wall map to extract the free
space. We consider that an unknown location (with a uniform probability
distribution) is not accessible. Then, we perform a morphological erosion
of this map [46], to ensure that the robot will not hit walls when moving. If
the robot is not trying to cross a bridge, we perform equivalent operations
for the probabilistic hole and resource maps. Finally we combine these
three maps together, to set a very low propagation speed in the holes, a
middle one in the resources and a high one in the free space. This ensures
that a robot located half over a hole will find a way out of it, and that
the robot will avoid resources when possible. The propagation speed
within walls is zero, as the robot is not supposed to be inside them. If
this happens, the programme triggers an exception, as this is probably the
manifestation of a bug.

This two-layer pathfinder does not in general produce optimal global
paths. For example, if a path traverses three areas, there might be more
than one potential bridge connecting the first two areas of the path, with
one closer to the third area than the others. In that case, choosing the close
one would lead to a shorter global path than choosing the remote one.
To implement such a global optimisation, it would be better to transform
the two-layer pathfinder into a single-layer pathfinder based on A* and
operating on a grid. However, doing so while retaining the smoothness
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property of our low-level pathfinder is difficult. Because of this, we employ
the two-layer approach.

7.6 HTN planning

We want the robot to autonomously find a plan to fulfil the human’s
order. The order can be a move or a build order. For example, the
human can order to build a vertical structure, which requires 3 cubes.
Imagine that only 2 cubes are readily available but 3 cubes are available
at a remote location. In this case, the robot could use these 2 cubes to
fill a valley to access the remote location to fetch the 3 cubes. To use
these separate elements of knowledge to choose its course of action, given
the environment and the goal, the robot uses an htn planner. We use
Planner 9 that we have presented in Chapter 6. The space of possible
plans to solve a given construction task is constrained by the htn planning
domain for our construction scenario (Figure 7.4). We designed this domain
around a htn task that connects areas togother. Then, the two top-level
tasks moveRobot and buildStructure call this task with the destination
and the resource areas as parameters. The preconditions and the forward
decomposition of Planner 9 prevent infinite recursions.

When the human gives an order, we directly construct the initial
state space from the symbolic representation of the world. Then we call
Planner 9, and if it finds a plan, we execute the plan. This consists in
sequentially executing the actions.

7.7 Adaptive HTN planning

As the htn algorithm decomposes a high-level task into a sequence
of low-level actions, in general there are several admissible sequences of
actions that can achieve a given task. The planning algorithm presented
in Section 7.6 finds the shortest plan if every task is decomposed into
one or more action. It is not the case of the autonomous construction
domain shown in Figure 7.4, because the regions-already-connected

alternative for method connectRegions results in no action. Yet by moving
the check for connected regions to the top-level methods (moveRobot and
buildStructure), and by providing an alternative for the cases where
the regions are always connected, we can translate this domain into one
for which Planner 9 is optimal. This will also remove the setConnected

htn action that does not correspond to any physical doing by the robot.
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Relations

unary relations = {robot, region, resource}

binary equivalent relations = {isConnectable, isConnected}

binary relations = {isIn}

Actions

move(d, r)
locals: a
precond: region(a) ∧ isIn(r, a)
effects: ¬isIn(r, a) ∧ inIn(r, d)

take(res)
locals: a
precond: resource(res) ∧ region(a) ∧ isIn(res, a)
effects: ¬isIn(res, a) ∧ ¬resource(res)

fill1(d, s)
precond: region(d) ∧ region(s)
effects: ∅

fill2(d, s)
precond: region(d) ∧ region(s)
effects: isConnected(d, s)

build1(d)
precond: region(d)
effects: ∅

build2(d)
precond: region(d)
effects: ∅

build3(d)
precond: region(d)
effects: ∅

setConnected(d, s)
precond: ∅
effects: isConnected(d, s)

Figure 7.4 htn planning domain for autonomous construction
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Methods

regions-already-connected(d, s)
task: connectRegions(d, s)
precond: region(d) ∧ region(s) ∧ isConnected(d, s)
subtasks: 〈〉

fill-valley(d, s)
task: connectRegions(d, s)
locals: t, rob, roba, res1, res1a, res2, res2a
precond: region(d) ∧ region(s) ∧ region(t) ∧

robot(rob) ∧ region(roba) ∧ isIn(rob, roba) ∧
resource(res1) ∧ region(res1a) ∧ isIn(res1, res1a) ∧
resource(res2) ∧ region(res2a) ∧ isIn(res2, res2a) ∧
¬equals(res1, res2) ∧ ¬equals(t, s) ∧
isConnected(s, roba) ∧ isConnected(s, res1a) ∧ isConnected(s, res2a) ∧
isConnectable(s, t) ∧ ¬isConnected(s, t)

subtasks: 〈take(res1), fill1(t, s),
take(res2), fill2(t, s),
connectRegions(d, t)〉

move-robot(d)
task: moveRobot(d)
locals: s, r
precond: region(d) ∧ region(s) ∧ robot(r) ∧ isIn(r, s)
subtasks: 〈connectRegions(d, s), move(d, r)〉

build-structure(d)
task: buildStructure(d)
locals: rob, roba, res1, res1a, res2, res2a, res3, res3a
precond: region(d) ∧

robot(rob) ∧ region(roba) ∧ isIn(rob, roba) ∧
resource(res1) ∧ region(res1a) ∧ isIn(res1, res1a) ∧
resource(res2) ∧ region(res2a) ∧ isIn(res2, res2a) ∧
resource(res3) ∧ region(res3a) ∧ isIn(res3, res3a) ∧
¬equals(res1, res2) ∧ ¬equals(res2, res3)

subtasks: 〈connectRegions(d, roba),
connectRegions(d, res1a), take(res1), build1(d),
connectRegions(d, res2a), take(res2), build2(d),
connectRegions(d, res3a), take(res3), build3(d)〉

Figure 7.4 (continued)
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Thus Planner 9 will find the plan with the shortest number of actions. We
have presented the domain in its non-optimal form because it is more
human-readable that way.

However, in the real world, the optimality of a plan does not depend
only on the number of actions, but on the actions themselves. With a
physical robot actions might fail, and different actions have different
failure rates. We are thus not interested in just finding an admissible
sequence of actions in the htn sense, but we want to find the plan that
has the most chance of success. However, as the htn planning domain
allows recursions, we cannot simply consider the expected probability of
success of the plan, as recursive tasks with actions that have a probability
of success of 100 percent would create infinite loops in the htn algorithm.
We could alleviate this problem by limiting the maximum probability of
success of any action to be strictly smaller than 1, but then the choice of
the bound is arbitrary. We prefer to model this effect by considering that
the usefulness of a plan does not only depend on its probability of success,
but also on its duration. Several observations of the real world motivate
this choice. For instance, the robot consumes energy with time, and thus
at a certain moment the robot will have to recharge, which will prevent it
from completing its plan. Also, by performing htn planning we assume
a stationary world, in which nothing changes beside the robot. This is
not true in reality, and the longer the execution lasts, the more probable a
change is. Finally, the robot is a physical device which can break.

To model the dependency on the plan length, we associate to each
action type a a corresponding utility u(a), which is a random variable
depending on the outcome of the action a. We only consider the type of the
action and not the parameters of every instances, because the parameters
represent real-world objects such as resources or areas that change from
experiment to experiment. We want Planner 9 to find the plan π that
has the maximum expected utility E [u(π)]. In the general case of htn

decomposition, a plan π is a directed acyclic graph (dag) of partially
ordered actions. However, in this application to autonomous construction,
we use a single robot and consider the plan as a sequence of k actions
π = 〈a1, . . . , ak〉 = ak

1. We define the utility of a plan π to be the product
of the utilities of its actions:

u(π) =
k

∏
i=1

u(ai) (7.1)

The utility of a plan is a random variable which depends on the outcomes
of its actions. Let R = {S, F} be the set of possible outcomes (success or
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failure). For a plan containing k actions, let Rk be k-ary Cartesian power of
the set R, representing the space of possible outcomes. Let r = 〈r1, . . . , rk〉
iterate over Rk. Thus, by the definition of the mathematical expectation:

E [u(π)] = ∑
r⊂Rk

p(r|π)u(π|r) = ∑
r

p(r|π)
k

∏
i=1

u(ai|ri) (7.2)

If an action fails, the robot stops the execution of the plan. We thus
consider the utility of a failure to be 0. Thus, the product of the utility in
7.2 is non zero if and only if all action executions result in a success. We
can thus rewrite 7.2 as:

E [u(π)] = p(r = S|π)
k

∏
i=1

u(ai|ri = S)

=
k

∏
i=1

p(ri = S|ri−1
1 = S, π)︸ ︷︷ ︸

θ(ai)

k

∏
i=1

u(ai|ri = S)︸ ︷︷ ︸
γ(ai)

(7.3)

This equation shows that the expectation of the utility of a plan is the
product of the probabilities of success of each successive action multiplied
by the product of the utility of each action. The probability of successfully
executing an action depends on some of the previous actions performed
by the robot. We call these its dependency list. In our domain there is
only a single dependency list for a given action. For instance, the action
fill1 depends on its preceding action, which is always take. Thus, the
probability of success of fill1 is:

p(ri = S|ri−1
1 = S, ai = fill1, ai−1

1 )

=p(ri = S|ri−1
1 = S, ai = fill1, ai−1 = take, ai−2

1 )

=p(ri = S|ri−1
1 = S, ai = fill1, ai−1 = take)

(7.4)

Knowing that the htn task decomposition algorithm enforces that fill1
will always be preceded by take, we can define the probability in 7.4
by a parameter θ(fill1). Thus for each action a, the probability that
its execution is a success is defined by the parameter θ(a). In 7.3, we
see that the utility γ(a) is also a function of the action a. We can define
γ̂ = max γ. With no loss of generality, we can enforce 0 < γ̂ < 1 by a
simple renormalisation. Thus the expectation of the utility of an infinite
plan is zero, because both products of 7.3 are < 1. In our domain, we have
7 possible actions and thus 7 values for θ and γ.

As we saw in the introduction to this section, we can transform our
htn domain such that every task is decomposed into one or more actions.
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action type description dependency list

move move the robot
take take a resource
fill1 fill a valley, part 1 take

fill2 fill a valley, part 2 take,fill1,take

build1 build a structure, part 1 take

build2 build a structure, part 2 take,build1,take

build3 build a structure, part 3 take,build1,take,build2,take

Table 7.2 The different actions and the preceding actions they depend on, called
the dependency list. For every action, the htn task decomposition algorithm
enforces that actions in the dependency list are executed before it. For each action
a, the probability of successfully executing it is defined by the parameter θ(a).

In this domain, we can use the expected utility of a partial plan, E
[
u(ai

1)
]
,

to guide the A* search [48] of Planner 9 such that it always finds the plan
that has the largest expected utility:

Theorem 7.1. Using − log E
[
u(ai

1)
]

as the path cost for a partial plan con-
taining i actions and by using −n log γ̂ as the heuristic cost, with n being the
number of remaining tasks to be decomposed, Planner 9 finds the plan that has
the largest expected utility.

Proof. A* is optimal if the heuristic function, in this case −n log γ̂, is
admissible, that is, if this function never overestimates the distance to the
goal. Let us consider a node with a partial plan ai

1 and n remaining tasks
to be decomposed. If Planner 9 can decompose this node into a plan π,
the latter will have at least i + n actions, as every task is decomposed into
one or more actions. Let us consider that this plan π has k actions, with
k ≥ i + n and m = k− i− n; its expected utility is:

E [u(π)] = E
[
u(ai

1)
]

E
[
u(an

i+1)
]︸ ︷︷ ︸

≤γ̂n

E
[
u(ak

i+n+1)
]

︸ ︷︷ ︸
≤1

≤ E
[
u(ai

1)
]

γ̂n

(7.5)

By plugging inequality 7.5 into the path cost of the final plan, and noting
that log is a monotonic function, we see that:

− log E [u(π)] ≥ − log E
[
u(ai

1)
]
+ (−n log γ̂) (7.6)
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move build, local res. build, remote res.
training validation

take(c0) take(c1) take(c0)

fill1(a1, a0) build1(a1) fill1(a1, a0)

take(c5) take(c2) take(c5)

fill2(a1, a0) build2(a1) fill2(a1, a0)

move(a1, r0) take(c3) take(c1)

build3(a1) build1(a0)

take(c2)

build2(a0)

take(c3)

build3(a0)

Table 7.3 Solution plans for the two training tasks and for the validation task

This inequality shows that the path cost of the completed plan is always
larger than the path cost of a node plus the heuristic cost. The heuristic
function is thus admissible, and A* always finds the plan of minimum
cost, that is, the plan of maximum expected utility.

7.8 Experimental methodology

We test the autonomous construction application in the real-world
setup presented in Figure 5.2 (p. 65). To validate the adaptive planning
model, we must measure the utility γ(a) and the success rate θ(a) of the
different actions. We cannot measure the success rate directly because
the actions have dependency lists (see Table 7.2). We thus make indirect
measures, by letting the robot perform high-level tasks and by monit-
oring their outcomes. We define two training tasks and one validation
task. Table 7.3 shows the solution plans for these tasks, with constants
corresponding to Figure 5.2 (bottom). In all tasks, we initially let the robot
explore for a while until it has a stable representation of the environment.
This exploration phase lasts 5 to 10 minutes.

The first training task consists of letting the robot move from the small
area (the one with two resources) to the large one (the one with three
resources). To fulfil this task, the robot must build a bridge. This task
provides measurements for the following actions: take, fill1, fill2 and
move. At the beginning of this task, we place the robot in the centre of
the small area, facing the opposite area. The second training task consists
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task average duration success rate

move 100 s 95 %
build, local resources 286 s 95 %
build, remote resources 726 s 80 %

Table 7.4 Average duration and success rate over 10 runs for three different
tasks

of building a tower in the large area, using the three resources available
in this area. This task provides measurements for the following actions:
take, build1, build2 and build3. At the beginning of this task, we place
the robot in the centre of the large area, turning its back on the valley. The
validation task consists of building a tower in the small area, starting from
this area. Because this area holds only two resources, the robot must first
employ them to build a bridge toward the large area, and use the three
resources there to build the tower in the small area. This task employs all
types of actions, excepted move. At the beginning of this task, we place
the robot in the centre of the small area, facing the large area.

We consider that all actions have the same utility γ(a) = γ, ∀a. This
utility is not 1 because events external to the robot controller may prevent
the successful completion of the action. In this series of experiments,
from times to times the Wi-Fi network fails. We thus estimate the utility
factor γ by counting the number of times a network failure interrupts an
experimental run. When such an event occurs, we restart the experimental
run.

7.9 Results

We have run each task 10 times. Figure 7.5 shows a sequence of images
of a successful validation-task run. Table 7.4 shows the success rate and
the average duration of the different tasks. We only take successful task
executions into account to compute the average duration.

The move task (training) fully succeeded 9 times out of 10 trials. One
time the robot dropped the second cube aside instead of into the valley.
However, when the robot then moved, it pushed the cube into the valley.
As we could interpret this either as a success (finally, the task was a
success) or as a failure (the action itself did not result in the expected
situation), we decided to consider this as a semi-success, hence the 95 %
success rate for the move task. The building task with local resources
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The robot explores its environment for a while, then a human orders the
construction of a tower:

The robot needs 3 resources to build the tower, but only 2 are readily
available; thus the robot must build a bridge to harvest remote resources:

Figure 7.5 Image sequence of a successful construction.
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Once the bridge is completed, the robot can harvest the remote resources
to build the tower:

Figure 7.5 (continued)
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action number of executions number of successes rate
tr

ai
ni

ng
move 10 10 100 %
take 50 50 100 %
fill1 10 10 100 %
fill2 10 9.5 95 %
build1 10 10 100 %
build2 10 10 100 %
build3 10 9.5 95 %

va
lid

at
io

n

move 0 0 undef.
take 45 44 98 %
fill1 10 10 100 %
fill2 10 9 90 %
build1 8 8 100 %
build2 8 8 100 %
build3 8 8 100 %

Table 7.5 Success rate for different actions over 10 runs of two training tasks
and one validation task

(training) fully succeeded 9 times out of 10 trials. One time the robot put
the third and last cube of the tower half onto the second cube. It thus built
a tower but not a straight one. Here we could also interpret this either as
a success (the robot built a tower) or as a failure (the tower was imperfect),
so we decided to consider this as a semi-success, hence the 95 % success
rate for the building task with local resources. The building task with
remote resources (validation) fully succeeded 8 times out of 10 trials. One
time the robot fell into a valley just before executing fill2, because of the
imperfection of the world perception. One time the robot failed to take its
third resource, because it tried to grasp the resource from its corner, and
the gripper alignment procedure was not extensive enough. This results
in a 80 % success rate for this validation task. This rate is not as high as in
the training tasks because this experiment lasts longer and combines more
actions; but also because the perception of the remote area is less precise
than the perception of the local area.

While running the training tasks, we have executed 110 actions and
experienced 3 network problems. We can thus define the utility of an
action by one minus the probability that it is interrupted by such a problem.
In our case, this leads to γ = 1− 3

110 = 0.973.
Based on these experimental runs, we extract the average success rate
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of each action (Table 7.5). This allows us to compute the probability of
success of a plan and its related utility using Equation 7.3. The probability
of success of the plan corresponding to building a tower using remote
resources is:

p(πbuild tower using remote resources) = θ5
takeθfill1θfill2θbuild1θbuild2θbuild3

(7.7)
Using the estimation of the actions’ success rate from the training tasks
(Figure 7.5, top), this value is 0.90. However, out of 10 validation runs,
only 8 were successful, which corresponds to a probability of 0.80. We
have a difference because during both training tasks, the robot always
interacts with resources close to the places it has physically explored. But
in the validation task, the robot has only seen the remote resources with
its camera. As we already discussed in Section 5.6 (p. 76), the estimation
of the position of these resources is inaccurate. Thus the take action is
not 100 % successful anymore, which explains the worse performance of
the validation task compared to the estimation resulting from the training
tasks. Regardless of this discrepancy, we consider these results close
enough to prove that our adaptive planning model is successful in guiding
the planning along the most best course of action.

Because in this experiment we want to quantify our action model and
not our perception model, we always issue task orders only when we
consider that the perception of the world is correct. Even in this case we
notice that failures, in particular for the take action, tend to occur when
the perception quality is worse than usual. This confirms that perception
quality is critical for action success. Moreover, automating the decision of
when to stop exploring and when to start acting is not trivial. A simple
solution could be to wait for a certain duration, and then to start acting as
soon as Planner 9 finds a successful plan. However, there is a risk that a
transient reading, seen as a resource, produces an erroneous grounding
and thus an erroneous plan. A more robust solution would be to wait for
the symbol grounding output to stabilise; and only to start planning and
execution when this output has not changed for a certain duration.

7.10 Discussion

To implement this experiment, we performed a complete vertical integ-
ration of the robot control software from the low-level sensor processing
and actuator control to the high-level htn planning. We are fully satisfied
with Planner 9, as it is fast enough to produce plans in less than one second.
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We are also pleased with aseba, as it allows us to quickly implement com-
plex low-level behaviours such as the one presented in Figure 7.3. Aseba

decouples the low-level behaviours from the high-level control, and thus
improves the cleanness of the latter. Low-level behaviours employ many
state machines, and it might be interesting to add explicit state-machine
support to the aseba language. We have observed that the most difficult
part of the software stack is the perception subsystem, in particular the
symbol grounding part, which is consistent with the literature [47]. The
rest of this section discusses some of the lessons we learnt by developing
and running this autonomous construction experiment.

The robot control programme fuses data from the infrared proximity
sensors and the camera. As the proximity sensors have only a short range
and the camera has a long range but a narrow view angle, these two
sensors cover different regions of space. As we saw in Section 5.7 (p. 78),
this difference leads to a suboptimal perception quality. Another problem
lies in the limited range of the robot’s sensing. The rotating distance sensor
barely sees over 1 m. The camera can see farther, but as we compute the
distances by dividing by the pixel’s ordinate, a slight difference on that
axis introduces major errors. As the tracks of the robot make it shake
while moving, this limits the effective range of the camera. Despite a short
sight range, the robot needs room when grasping resources and moving
around while carrying them. Thus the space of possible experimental
scenarios is constrained by these opposite requirements, a small world for
a good perception and enough room for action. This fact is a weakness of
this robot as a tool to study autonomous construction, but it also shows
the importance of the integration and of a global analysis. A good solution
must consider the constraints of both the robot and the application.

As we have already mentioned in Section 5.7, timestamping the dif-
ferent incoming data would improve the performance of the perception
subsystem. We also think that if the application becomes more complex,
if the high-level processes such as symbol grounding, finding paths or
planning take a lot of time, these should run in worker threads with
low priorities. Building an application with many threads of different
priorities is not trivial, in particular because dead-locks can easily appear
if the programmer does not consider the information flows with care.

In this application, the robot stops sensing the valleys and the resources
once it starts the execution of the plan. The robot does not update its
maps following its actions; for example if the robot takes a resource and
drops it into a valley, this resource is not removed from the resource
map. This behaviour is the simplest and is fine as long as we ask the
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robot to perform a single task. It would be a problem if the robot is
interrupted in the middle of its task, or if we want the robot to perform
further tasks. Indeed, in the first case the robot would need time to
update its resource map through new exploration, and in the second case
the robot could mistake cubes in valleys for ghost resources. We could
alleviate the first problem by updating the probabilistic maps following the
robot’s actions, and alleviate the second problem by using the knowledge
of the presence of cubes in valleys to interpret the camera image. This
would complicate the code and throws doubts on the scalability of such
quirks. However, implementing them correctly would enable continual
planning [11]. Instead of requiring plans that completely solve the problem,
we could add to the htn domain decompositions that perform some
actions and then trigger a re-planning. This feature would be necessary
for real-world applications, and its dependency on special updates to
the probabilistic maps clearly shows the level of intrication between the
different subsystems for realistic robotic applications. This corroborates
Hypothesis 1.1 (p. 2).

If we analyse the perception process in the light of the needs of the
robot’s actions, we see that we invest a lot of computational power to
build a metric map, yet the robot only uses this map to go to specific
positions and to find paths. Because the localisation is not precise, the
robot must still align using its camera before taking resources and filling
valleys. Moreover, we build probabilistic maps of the resources and the
valleys following the assumptions that all cells are independent and that
all observations contribute equally to the maps. These assumptions are
crude approximations and result in a slow and imprecise perception. All
these considerations together lead us to question whether metric maps are
the good representation choice for this application. Semantic topological
maps [59] might be a better representation model. We can imagine to use
a wide-angle camera to detect resources and holes. With a good image-
processing algorithm we can extract a lot of information from a single
frame, for instance the distances between the visible resources, whether
they are in the same area or not, etc. This solution could allow the robot
to perceive its environment faster and more robustly.

One could criticise us for using simple building blocks that embed
magnets and metal plates to self-align. However, we could object that
currently a lot of real-world constructions are made of prefabricated
materials, shaped to ease the assembling. Adding magnets to our cubes is
not qualitatively different. Moreover, our cubes do not embed fiducials,
markers or rfid tags contrary to works such as [105] or [116]. In the
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future, the exploration of robotic construction with raw materials is clearly
a difficult but promising direction, that presents many scientific and
technical challenges.

As we presented in Section 7.8, to find the parameters of the adaptive
planning model we estimate the probability of success of each action
during a training phase, by running several training tasks. We have
seen that this leads to discrepancies with a more complex validation task.
Moreover, this supposes a static world, in which the properties of the
elements do not change with time. If the world is dynamic in this respect,
or if we want to estimate the probability of success online, we can update
the parameters during the operations of the robot using an exponential
forgetting model. Let us suppose that the robot has executed N times
an action a, at times t = 〈t1, . . . , tN〉. Moreover, let us suppose that these
executions resulted in N outcomes r = 〈r1, . . . , rN〉. The i-th outcome can
either be a success, and ri = 1 or a failure, and ri = 0. We can implement
our exponential forgetting model to estimate the probability p(r = S) that
the action a executed after time tN results in a success by the following
equation in which λ is a time constant, corresponding to the probability
that the world model changes:

p(r = S) = ∑N
i=1 e−λ(tN−ti)ri

∑N
i=1 e−λ(tN−ti)

(7.8)

In this equation we iterate over the whole history to compute the final
probability. We can, however, transform this equation into an iterative
version that only requires two parameters a and b with p(r = S) = a

b .
Initially, a = r1 and b = 1. Then, knowing a and b at time i, their values at
time i + 1 are:

f = e−λ(ti+1−ti)

ai+1 = f · ai + ri+1

bi+1 = f · bi + 1

(7.9)

We can interpret this algorithm as a form of reinforcement learning applied
to our particular case of htn planning. Its form is simple as long as we
can model the success rate of an action by a single parameter. Figure 7.6
shows a simulation of this learning algorithm on synthetic data. Applying
this algorithm to a construction application would improve the adaptivity
of the robot. However, the robot must first be able to perfectly sense the
result of its actions, and must be able to recover from execution failure
at any time. These constraints present major practical difficulties, which
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Figure 7.6 Simulation of the learning algorithm for the task’s probability of
success, on synthetic data. The top green dots indicate a successful action, and
the bottom red dots indicate a failed action.

are much harder to solve than implementing a learning scheme. Yet we
think that this learning algorithm, albeit simple, is interesting because it
springs from an integration process. This shows that simple mechanisms
can efficiently increase robot intelligence if they are well integrated.

In general, the choice of the amount of knowledge to hand-code in a
robot and what to leave to learning is not easy. If too much is hand-coded,
the robot lacks adaptivity; but if too much is left to learning, the robot will
learn too slow or not learn at all. In the extreme case when everything
is left to learning, the planning process becomes a partially observable
Markov decision process. In this case, solving a problem even as modest
as our autonomous construction scenario is intractable. We think that
our approach of defining the htn domain by hand and letting the robot
learn online the success rate of alternatives is a good compromise for
current hardware. However, future developments might shift this balance,
probably in the direction of learning, especially if robots can share their
acquired knowledge with their peers.

7.11 Conclusion

In this chapter, we have demonstrated an autonomous construction ap-
plication with scarce resources. We have shown a robot that autonomously
reasons about the available resources and that employs them intelligently
to build three-dimensional structures. This robot is composed of mechanic
and electronic parts that are not at the state of the art, in the sense that
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most of these parts are consumer-grade components. In particular, the ro-
bot does not embed a laser scanner nor a laptop-level processor. However,
by building upon our previous bricks and by integrating them carefully,
we managed to create an application that is beyond the state of the art
in autonomous construction. This validates Hypothesis 1.2 (p. 2), as our
robot demonstrates a more intelligent behaviour than related works. We
have also proposed a learning mechanism that allows to take profit of a
priori human knowledge while still providing adaptation. This mechan-
ism is computationally lightweight and allows the robot to learn quickly.
These features make this mechanism well suited for providing adaptation
in realistic scenarios, in which the robot has to perform different tasks and
thus cannot redo a single tasks a hundred time to wait for the learning to
converge.
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Chapter 8

Lessons learnt and future work

Beside the various contributions presented in the previous chapters,
the meta contribution of this work lies in the epistemology of mobile
robotics. In this chapter, we share some of the thinkings that result of
the experience we gained performing this work, and we propose future
research directions.

8.0.1 On where to run the controller

A design goal of this work was to build a system whose software can
run onboard, as autonomy is a critical feature for mobile robots. However,
because we wanted to analyse the behaviour of the robot in real time,
during most of the experiments we ran the high-level controller on a
remote computer and only ran a simple vision back end on the robot,
as shown in Figure 5.6 (p. 75). The problem of allowing autonomous
operations by the robot while enabling the developers to analyse its
behaviour is always present in robotic research. Some researchers try
to alleviate it by running experiments in simulator, but as we already
discussed in Section 7.1 (p. 98), this is not realistic enough to develop
complex interactions with the world. So we are left with two approaches
to solve this problem.

The first is to run everything on the robot, and to use a remote control
software such as VNC to access the debug output from a remote computer.
We tried this with the VNC server provided with Qt Embedded, but over a
Wi-Fi 802.11g link it was unbearably slow. The reason probably lies in the
VNC implementation of Qt Embedded, but in general this solution needs
a powerful computer on the robot and a fast connection with the remote
computer. For instance, Willow Garage proposes to use this development
scheme for their PR2 robot.
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The other solution is to do minimal processing on the robot, to transmit
relevant data and to do processing on a fast remote computer. This is
the solution that we have finally chosen, as we process the camera im-
age and send only a bitmap of the relevant part to the remote computer,
along events from aseba. We think that this solution is very interesting
and should be explored further. For instance, if the vision algorithm
implies some feature-extraction step, as most visual slam algorithm do,
it would be wise to detect the features on the robot, and then to transmit
their descriptors to the remote computer. Moreover, as features tend to
stay visible for several frames, it would be interesting to only send their
translation vector between images, in a compressed form, and their ap-
pearance/disappearance events. Globally, we can consider this method as
an extension of the event-based approach of aseba. We could also consider
it as an instance of the hcs architecture [2]. We think that exploring this
approach in collective robotics would be particularly interesting, because
it allows the robots to easily share knowledge about the world. We think
that a comparison with other approaches such as swarm robotics (fully
distributed) or complete remote control (fully centralised) would also
provide a useful contribution to the state of the art.

Autonomy is critical for mobile robots, but as most of these robots
work in human environments, they can take advantage of the existing
infrastructure. In particular, in modern urban environments, wireless
networks allow to deport part of the computation to a remote computer,
while maintaining full physical autonomy. We think that this possibility
should be taken into consideration when designing robotic applications.

8.0.2 On the design methodology

In most engineering fields, there are methodologies to build complex
systems by assembling simple parts. However, robotics lacks successful
methodologies. This question was discussed in a recent workshop [13],
focusing on what makes robotics different. A common trait of existing
engineering methodologies, for instance middleware-based approaches, is
that they propose to assemble small black boxes into bigger black boxes.
The black boxes cover distinctive functionalities. These methodologies
thus consider the parts to be independent and define abstractions to
interface them. In robotics, as we saw in Chapter 5, the basic bricks—
the sensors, the actuators and the different levels of algorithms—are
not independent as they interact through the world in addition to their
connections. They are also not orthogonal, which makes the system more
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difficult to devise. Moreover, standard machines (such as a production
chain) or simple autonomous artefacts (such as an aeroplane autopilot)
have only a small information input space and a small repertoire of
behaviours. On the contrary, mobile robots have a very large and loosely
structured information input space and a large repertoire of behaviours.
As a mobile robot must perform different tasks, the information flows
in its physical and control structures are not fixed. The flows change
constantly as the inputs vary. These variations complicate the design and
the analysis of the robot controller.

Furthermore, as some researchers have highlighted [100], specifying the
requirements for robotic applications is difficult. Because robots and their
interactions with the world are so complex, it is mostly impossible to define
fixed requirements. This implies that even if we had a methodology, the
design process would still require experimentation and redesign phases.
Thus the reality of mobile-robot development is closer to applying a
genetic algorithm in a huge non-linear space than to an engineering
process: We have basic bricks but combining them correctly is not trivial
and we might have to modify them. In this respect, the automated global
optimisation that we presented in Chapter 4 makes a lot of sense, as a
global optimisation allows to find a Pareto-optimal design given a set of
constraints.

Even if there exist no successful system-level methodologies to build
robots, there is still room for guiding principles: The design space is large
and non-linear, but it is structured and not completely chaotic. Indeed,
sub-fields such as motor control or image processing are well understood
and there exist templates of successful combinations. Knowing a solution
to a problem and facing a similar problem, there is a high probability
that a neighbouring solution will apply. We think that this property
allows the creation of design patterns for robotics [38, 56]. The global
optimisation methodology (Chapter 4) is such pattern, as is the distribution
of processing through events (Chapter 3). The search for design patterns
in robotic development is part of the science of integration. We propose
to search them by targeting applications of increasing complexity and
versatility, for which the robot hardware and software will get more and
more complex. The analysis of the successful approaches will uncover the
reliable patterns. This meta-methodology, while being basic, is close to the
reality of evolution in which successful patterns are reproduced.
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8.0.3 On the generality of published results

Recent works in robotics have provided solutions to various problems
that were considered difficult from a theoretical point of view, such as
integrating reasoning with motor control in a probabilistic framework [109]
or performing real-time slam and world reconstruction with a single
camera [77]. These results are impressive and clearly advance the state
of the art; however their scope of application is not clearly defined. It
is very difficult, starting from a research paper, to know whether the
presented solution will be effective in another context or under slightly
different conditions. This makes the integration task difficult as one cannot
judge the general quality of an approach based on the research papers
alone. Morevore, this hinders the technological transfer from research to
applications, because one wanting to develop a real-world application is
left with many choices one must test separately. To improve this state of
affairs, researchers should provide versatile demonstrators that function
under different conditions. Moreover, they should thoroughly report the
conditions of application of their algorithms, along their limitations and
weaknesses.

8.0.4 On human-level robotic intelligence

A common question from the lay public is whether robots will one day
be better than humans, and if so, when. Scientifically, this question is ill
formulated; but given its philosophical importance, it is still worthy of
attention. So let us discuss this question from the side of intelligence and
autonomy; as at the level of physical strength, some industrial robots are
already far beyond human abilities.

In this work, we managed to implement a complex reasoning ability
into a physical robot. Indeed, being able to choose an optimal course of
action given limited resources implies intelligence (see Section ??, p. ??).
However, the task diversity that our robot can achieve is low, and the robot
does not cope with failures nicely. On the contrary, humans are versatile
and in case of failure, their behaviour degrades gracefully in most cases.
This difference shows the enormous work still required to endow robots
with human-level abilities. We must improve the precision, the bandwidth
and the generality of the hardware devices, but also improve the reusability
of the software and the behaviours. We must find methods to cope with
failure, and these methods should be adjustable to different scenarios and
tasks. Moreover, we should find perception and reasoning algorithms that
adapt to various conditions. Learning is certainly part of the solution, and
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for instance calibration is a primitive form of learning. However, as we
already discussed in Section 7.10 (p. 116), learning requires much help
from low-level layers, and their development represents a significant time
investment. Finding a way to build these primitives semi-autonomously
is certainly one of the challenges ahead of us. The research field of
autonomous mental development [115] tackles this problem, however for
a real robot all existing approaches still require a huge amount of hand-
crafted work. Moreover, these approaches do not propose systems that
scale. A better understanding of scalable structural-discovery algorithms
is clearly a promising research direction.

We must address all these questions and solve most of them in many
different contexts to imagine robotic applications in which robots show
human-level intelligence. We think that the best way to proceed is to im-
plement tasks of increasing complexity and versatility. The needs of these
tasks will demand intelligence in the robots, and naturally researchers
will develop algorithms to provide this intelligence. Versatility is import-
ant, because the reality is not a perfectly calibrated room. Intelligence
implies adaptation and learning, but the type and the amount of learning
is an open question. Modern robots have the ability to share thoughts
through Wi-Fi. We think that taking advantage of this to reuse knowledge
between robots and experiments is also a good direction to increase robot
intelligence. The existing knowledge on the functioning of the brain is
rapidly increasing, and we can use this knowledge to aid us in developing
algorithms. However, we should not naively copy existing brain struc-
tures, as robots have fundamentally different bodies and constraints than
animals.

If we look back at the recent history of robotics, during which we
experienced the rapid maturation of high-performance slam algorithms,
the appearance of dense energy storage solutions or the generalisation
of inexpensive wireless networks, we see that robotics is improving at
a rapid pace. We thus expect further progresses in the near future, but
human-level intelligence is still far-off and its reachability still a matter of
conjecture.
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Chapter 9

Conclusion

9.1 Summary of personal contributions

The mechanics and the electronics of the marXbot and the hand-
bot were developed by Michael Bonani, Philippe Rétornaz, Valentin
Longchamp, Daniel Burnier, Florian Vaussard and Tarek Baboura. During
the development process, I contributed ideas and feedback, but these were
minor.

All our electronic modules are based on the dsPIC family of microcon-
trollers. I have laid-out the foundations, the design philosophy and started
the implementation of Molole, a software library to wrap the hardware
devices of these microcontrollers. This library was subsequently developed
by Philippe Rétornaz

Based on the idea that we should not erect walls between conceptual
and physical layers, I have developed aseba. The original idea, the archi-
tecture, the language, the compiler, the vm, the ide and the communication
layer are my own work. The integration into the dsPICs, which comprises
the low-level control C code and the assembly-optimised native functions
are the contributions of Philippe Rétornaz.

I made the implementation of the slam algorithm in collaboration with
Valentin Longchamp. The idea of globally optimising the error parameters
of the motion model and the ray budget allocation by using an evolution
strategy is a personal contribution. To measure the ground truth positions
of the robot, I have implemented a tracker using an overhead camera and
topological fiducials.

Planner 9 is the result of a collaboration with Martin Voelkle. The choice
of the algorithm and its adaptation to the collective-robotic context are
mostly my contributions, while Martin contributed efficient data structures.



130 h Conclusion

We performed the implementation together.
The magnetic manipulator was first developed by Thierry Barras given

my specifications, then after testing it was redesigned by Frédéric Rochat,
Patrick Schoeneich and Pierre Noirat. The magnetic switchable device is a
development of Frédéric Rochat and Patrick Schoeneich while Philippe
Rétornaz programmed the deep low-level control of the manipulator.

The semantic maps and the autonomous construction experiments
are my own work. This encompasses the original idea, the construction
of the modular environment and the cubes, and all the programming,
experimentation and analysis work.

As further contributions to the community, we have developed four
open-source software as part of our research work. Molole is avail-
able at http://gna.org/projects/molole/ under the lgpl. Dashel is
a communication media abstraction library and is available at http:

//gna.org/projects/dashel under a bsd license. Aseba is available at
http://gna.org/projects/aseba/ under the gpl. Finally, Planner 9 is
available at http://gitorious.org/planner9 under the gpl.

9.2 Outlook

In the beginning of this report, we have formulated Hypothesis 1.1 (p. 2).
This hypothesis states that integrating capabilities together in a mobile
robot raises new questions that are not present in the parts but that re-
flect the inner structure of the application and the physics of the world.
This hypothesis also states that the integration process modifies the parts
themselves, and infers that integration is a science. In Chapter 3, we have
seen that the electronic architecture of a robot influences the performance
of its control algorithms. We have demonstrated that building a software
control architecture knowing the electronic constraints of the robot greatly
improves the capabilities of this robot. In Chapter 4, we have shown a
global optimisation of a robot’s intrinsic parameters and of the alloca-
tion of processing resources. Given the constraints of an imprecise but
inexpensive sensor coupled with a low-speed processor, the optimisation
chose the parameters that allowed to perform slam in real time. These
parameters reflect the shape of the robot and the structure of the world.
In Chapter 5, we have seen that the amount of information one can extract
from a sensor might depend on the precision of another sensor. This
implies that the sensors cannot be considered separately, but rather that
the robot developer should look for a Pareto-optimal sensor allocation
policy. In Chapter 6 we have shown that the constraints stemming from

http://gna.org/projects/molole/
http://gna.org/projects/dashel
http://gna.org/projects/dashel
http://gna.org/projects/aseba/
http://gitorious.org/planner9
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integration can modify an algorithm, because algorithms are often de-
scribed in general terms. We have shown that this modification leads to
an improvement over the state of the art. All these chapters contribute
evidences that together validate Hypothesis 1.1, that is, integration is a
science.

In Chapter 1, we have also formulated Hypothesis 1.2 (p. 2). This
second hypothesis states that the science of integration allows to scale up
mobile-robot intelligence in real-world applications. In Chapter 7 we have
demonstrated an autonomous construction application that is beyond the
state of the art of this field, while using only commonly available hardware
parts. We achieved this by performing a complete vertical integration from
the mechanic, electronic and the low-level control software up to the
reasoning algorithms. This successful application, and the lessons we
learnt doing it, validate Hypothesis 1.2.

9.3 Contributions to the state of the art

This work provides the following contributions to the state of the art:
– With aseba, we have demonstrated a novel architecture for distrib-

uted low-level control of miniature mobile robots. Aseba is the first
architecture for such robots that allows both event-based communic-
ation and dynamic reprogramming of the microcontrollers.

– For the first time, we have demonstrated the use of a global optimisa-
tion to find the parameters of a slam algorithm. This optimisation
takes the reconstruction quality of the trajectory as the evaluation
function and optimises over the parameter space.

– We have implemented the first multi-computer parallel htn planner.
We have shown that this feature dictates the implementation choices
for the htn algorithm and leads to improved performances over
existing planners.

– We have demonstrated an autonomous construction application
using a miniature mobile robot. This application is beyond the state
of the art in this field.

– We have performed the first complete vertical integration of a com-
plex robotic application involving high-level reasoning and structure
construction on a miniature mobile robot. Based on this work, we
have contributed insights to the question of integration in mobile
robotics.

– We have contributed a theoretical framework of the integration of
optimal htn planning and learning under limited computational
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resources.

9.4 Final conclusion

In conclusion, we want to stress once again the importance of integra-
tion for mobile-robotic research. Mobile robotics is different from other
fields because both the problem space and the solution space are huge and
highly non-linear. It is difficult to specify the requirements for a particular
problem; it is hard to find a good solution to this problem; and most of the
time this solution will not generalise. Yet, we see no theoretical obstacle to
scale up the capabilities of mobile robots, even in theory to human-level
intelligence. Improving the intelligence of mobile robots requires a lot
of real-world experimentation following a path of increasingly complex
scenarios. And this path is filled with many open questions related to
integration. We hope that this work sheds some light on how to approach
these questions.
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Appendix A

Technical details on ASEBA

A.1 EBNF grammar of the language

Formally, the ebnf grammar of the aseba language is the following:

program =

[ { variable_definition } ] {statement} EOF ;

statement =

onevent_definition |

subroutine_declaration |

block_statement ;

block_statement =

event_emission |

if_statement |

when_statement |

for_statement |

while_statement |

function_call |

subroutine_call |

assignment ;

variable_definition =

"var" VAR [ "=" INT16 { "," INT16 } ] ;

assignment =

var_write "=" shift_expression ;
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if_statement =

"if" or_expression "then" {block_statement}

[ "else" {block_statement} ] "end" ;

when_statement =

"when" or_expression "do" {block_statement} "end" ;

for_statement =

"for" VAR "in" INT16 ":" INT16 [ "step" INT16 ]

"do" {block_statement} "end" ;

while_statement =

"while" or_expression "do" {block_statement} "end" ;

function_call =

"call" FUNC "(" [ var_array_read { "," var_array_read } ] ")" ;

subroutine_call =

"callsub" SUB ;

subroutine_declaration =

"sub" SUB ;

onevent_definition =

"onevent" EVENT ;

event_emission =

"emit" EVENT [var_array_read] ;

or_expression =

and_expresssion "or" and_expresssion ;

and_expresssion =

not_expression "and" not_expression ;

not_expression =

{ "not" } condition;

condition =

binary_or_expression condition_literal binary_or_expression ;
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condition_literal =

">" | "<" | ">=" | "<=" |"==" | "!=" ;

binary_or_expression =

binary_xor_expression |

binary_xor_expression "|" binary_xor_expression ;

binary_xor_expression =

binary_and_expression |

binary_and_expression "^" binary_and_expression ;

binary_and_expression =

shift_expression |

shift_expression "&" shift_expression ;

shift_expression =

add_expression |

add_expression ">>" add_expression |

add_expression "<<" add_expression ;

add_expression =

mult_expression |

mult_expression "+" mult_expression |

mult_expression "-" mult_expression ;

mult_expression =

unary_expression |

unary_expression "*" unary_expression |

unary_expression "/" unary_expression |

unary_expression "%" unary_expression ;

unary_expression =

INT16 |

var_read |

"(" or_expression ")" |

"-" unary_expression |

"~" unary_expression |

"abs" unary_expression |

var_read ;
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var_read =

VAR |

VAR "[" binary_or_expression "]" ;

var_array_read =

VAR [ "[" INT16 [ ":" INT16 ] "]" ] ;

var_write =

VAR |

VAR "[" binary_or_expression "]" ;

where:
– int16 is a 16-bit integer or a constant,
– var is a known (or to be defined) variable,
– func is a known native function,
– event is an event name,
– sub is a know (or to be defined) subroutine,
– eof is the end of input file.
This grammar does not show the additional elements used in the

parser for intelligent error reporting. For information about these, please
read the source code of the aseba compiler. This grammar enforces syn-
tactic consistency. Semantic consistency is enforced by a mix of identifier
validation, variable range checking, a type checking pass on the parsed
tree and run-time checks. The aseba language supports comments on
single lines or after any valid statement. Comments consist of an "#" and
the comment, which continues until the end of the line. The lexer removes
comments prior to calling the parser.

A.2 Deployment of an ASEBA VM

The vm itself is straightforward to port, as it is plain C and thus should
compile on any platform. In any case, the source code of the vm counts
fewer than 1000 lines of C, so adapting it to non-standard C should be
feasible in a short time. The interfaces to the external world require slightly
more work.

First, the interface to the aseba network will depend on the type of
bus one uses. Currently, aseba supports the can bus and direct links (usu-
ally serial). The transport/ directory in the aseba source code contains
adapters, that on one end provide functions to the vm for communication
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and on the other end provide an interface to the communication bus.
A can adapter is available in transport/can, and a generic adapter for
stream-based communication links is available in transport/buffer.

Second, the interfaces to the sensors, actuators and execution-flow
sources (typically interrupts) depend on the feature-set of the microcon-
troller and on the application. The directory targets/ in the aseba source
code contains several examples. The directories targets/challenge and
targets/playground provide examples of vm controlling virtual e-puck ro-
bots inside the Enki simulator. The directory targets/e-puck contains the
implementation of aseba on the real e-puck robot. All these examples use
the buffer transport interface. In opposite, the directory targets/dspic33

contains a generic structure for running aseba inside a dspic33 using can

as a communication layer.
The directory targets/can-translator/ contains the code and the

schematics of a can to uart translator using a dspic33. This code uses
Molole 1 to access the dspic’s peripherals.

In summary, to port aseba to a new microcontroller, one first has to
select the type of communication one is interested in, and then to choose
an example close to the target application, and start hacking from there.

1. http://mobots.epfl.ch/molole.html

http://mobots.epfl.ch/molole.html
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Appendix B

Experimental supplementary
material

B.1 Source code for experiment 3.3.3

This section lists the source code that we used to perform experiment
3.3.3 (p. 37).

B.1.1 Constants

name value

proximity.Threshold 38
proximity.Shift 14
ground.ThresholdDetect 450
ground.ThresholdLeave 570
ground.Shift 11
sensors.Period 15

B.1.2 Events

name data size

Stop 0
SetSpeed 2
HoleDetected 1
ObstacleDetected 1
FreeOfHole 0
FreeOfObstacle 0
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B.1.3 Left motor microcontroller

var user_target = 0

var hole_target = 0

var obstacle_target = 0

var val

sub UpdateTargetSpeed

if hole_target != 0 then

motor.pid.target_speed = hole_target

else

val = |user_target + 1

call math.muldiv(val, val, obstacle_target, 60)

motor.pid.target_speed = user_target + val

end

onevent Stop

user_target = 0

callsub UpdateTargetSpeed

onevent SetSpeed

user_target = event.args[0]

callsub UpdateTargetSpeed

onevent HoleDetected

hole_target = event.args[0]

callsub UpdateTargetSpeed

onevent FreeOfHole

hole_target = 0

callsub UpdateTargetSpeed

onevent ObstacleDetected

obstacle_target = event.args[0] + event.args[1]

callsub UpdateTargetSpeed

onevent FreeOfObstacle

obstacle_target = 0

callsub UpdateTargetSpeed

B.1.4 Right motor microcontroller

var user_target = 0

var hole_target = 0

var obstacle_target = 0

var val

sub UpdateTargetSpeed

if hole_target != 0 then
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motor.pid.target_speed = hole_target

else

val = |user_target + 1

call math.muldiv(val, val, obstacle_target, 60)

motor.pid.target_speed = user_target + val

end

onevent Stop

user_target = 0

callsub UpdateTargetSpeed

onevent SetSpeed

user_target = event.args[1]

callsub UpdateTargetSpeed

onevent HoleDetected

hole_target = event.args[0]

callsub UpdateTargetSpeed

onevent FreeOfHole

hole_target = 0

callsub UpdateTargetSpeed

onevent ObstacleDetected

obstacle_target = event.args[0] - event.args[1]

callsub UpdateTargetSpeed

onevent FreeOfObstacle

obstacle_target = 0

callsub UpdateTargetSpeed

B.1.5 Proximity sensors microcontroller

var proximity.vectorX[24] =

-254, -241, -212, -168, -113, -50, 17, 82, 142, 192, 229, 250,

254, 241, 212, 168, 113, 50, -17, -82, -142, -192, -229, -250

var proximity.vectorY[24] =

-17, -82, -142, -192, -229, -250, -254, -241, -212, -168, -113, -50,

17, 82, 142, 192, 229, 250, 254, 241, 212, 168, 113, 50

# differences are negative

var ground.vectorX[8] = 255, 180, 0, -180, -255, -180, 0, 180

var ground.vectorY[8] = 0, 180, 255, 180, 0, -180, -255, -180

var hole = 0

var targets[2]

var i

var val

var min

var max

var mean
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var eventBuffer[2]

var proximity.activation

var angle1

var angle2

var angleScalarProduct

var inHole

var proximity.skipped = 20

var proximity.old[2]

var tmp[2]

sensors.period = sensors.Period

onevent Stop

sensors.period = 10

targets[0] = 0

targets[1] = 0

onevent SetSpeed

targets[0] = event.args[0] + event.args[1]

targets[1] = event.args[1] - event.args[0]

onevent sensors.updated

# obstacle avoidance

call math.dot(

eventBuffer[0], proximity.corrected, proximity.vectorX, proximity.Shift)

call math.dot(

eventBuffer[1], proximity.corrected, proximity.vectorY, proximity.Shift)

call math.dot(proximity.activation, eventBuffer, eventBuffer,4)

if proximity.activation > proximity.Threshold then

call math.sub(tmp, eventBuffer, proximity.old)

call math.dot(val, tmp, tmp, 4)

if val > 15 then

proximity.skipped = 20

end

if proximity.skipped >= 20 then

if (targets[0] != 0 or targets[1] != 0) and

|eventBuffer[0] < 6 and |eventBuffer[1] < 6 then

eventBuffer[1] = 20

end

call math.copy(proximity.old, eventBuffer)

proximity.skipped = 0

emit ObstacleDetected eventBuffer

else

proximity.skipped = proximity.skipped + 1

end
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end

when proximity.activation <= proximity.Threshold do

proximity.skipped = 20

emit FreeOfObstacle

end
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